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Abstract

The coordination of spatially distributed systems of cooperating agents, which
perform an assigned mission in the presence of uncertainty and system faults, is an
important emerging technology. The actions and health of these distributed systems
depend upon the information that can be communicated and the knowledge of the current
capabilities of all cooperating agents. Methodologies for the distribution of estimation
and redundancy management functions over the dynamic network of cooperating agents
were developed, leading to effective team strategies

Progress has been made on various aspects of the distributed systems problem.
From the fundamental level we investigated the decentralized control problem with
constrained communication. In parallel the allocation of transmit power in wireless
networks was a focus of study into the decentralized control problem because it has a
simple structure and the information communicated is constrained. In the area of health
monitoring new robust analytical redundancy methods have been developed which
detects, identifies, and reconstructs sensor, actuator and plant faults. A robust multiple-
fault filter is developed based on a performance measure from which the desired
detection subspaces are approximately constructed. This detection filter formulation,
which includes uncertainty, is the bases for single-fault time-varying, decentralized
detection filters, and fault magnitude reconstruction. An innovative application of
distributed detection filters methodology is to the target track association problem.
Finally, the distributed estimation problem was addressed by considering elements of the
. relative navigation problem among distributed vehicles. Exact statistical solutions to the
pseudorange equations in GPS and an efficient nonlinear filter based on multiple
hypothesis sequential probability ratio tests for resolving the integer ambiguity in
differential carrier GPS were developed and extended.

Accomplishments

The following accomplishments in the study of cooperative agents are divided into three
categories; decentralized control, robust fault detection filters for distributed analytic
redundancy management systems, and nonlinear estimation applied to relative GPS
navigation among moving vehicles.




1. Decentralized Control

1.1 A Stochastic Decentralized Control Problem with Noisy Information

A simple decentralized stochastic control problem is considered where the non-classical
nature of the information pattern is induced by the uncertainty of the information
transmission in the system [1, Appendix A]. This is in fact a reformulation of the
Witsenhausen counter-example, where the first station is allowed to send its’ information
to the second station through a noisy channel. Non-convexity of the problem in this new
formulation has been established and it is shown how this formulation relates to a
classical problem and the Witsenhausen problem, respectively, when the transmission
noise intensity goes to zero or infinity. Assuming a small transmission noise intensity, an
asymptotic approach is then used in order to find an approximated cost. A necessary
condition for asymptotically optimal strategies has been obtained using a variational
approach and it is shown that the linear strategies, with slightly different coefficients than
the noiseless transmission case, satisfy the necessary condition.

1.2 Application to Power Allocation in Cellular Radio Networks
A distributed Dynamic Channel and Power Allocation (DCPA) scheme based on a novel
predictive power control algorithm is proposed [2, Appendix B]. Power control is
considered an efficient scheme to mitigate co-channel and multiple-access interference in
cellular radio systems. Various approaches have been proposed in recent years to design
power control algorithms. We focus on the feedback algorithms that are based on Signal
to Interference plus Noise Ratios (SIR-based algorithms). We review SIR threshold
approaches and then discuss how power control design can be formulated as a
decentralized regulation problem. We use a robust control framework to analyze global
stability of a network on a single channel. We obtain a sufficient condition, which
guarantees that the deviations of the power levels form their optimal values remain
bounded, even when the channel gains change, as long as the network stays feasible [3,
Appendix C]. The Minimum Interference Dynamic Channel Assignment algorithm is
employed, while simple Kalman Filters are designed to provide the predicted
measurements of both the channel gains and the interference levels, which are then used
to update the power levels. Extensive computer simulations are carried out to show the
improvement in performance, under the dynamics of user arrivals and departures and user
mobility. It is shown that the number of dropped calls and the number of blocked calls

are decreased while, on average, fewer channel reassignments per call are required [2,
Appendix B].

1.3 Periodic Control

A Tl test is presented for determining when a controller with periodic gains is superior to
a LTI compensator for a class of LQ strong stabilization problems [4, Appendix D]. It
has been noted that only strongly stabilizing compensators can stabilize a certain type of
decentralized system. For systems with strictly proper transfer functions, it is proven
that stable high frequency periodic controllers based on weak variations about the LTI




case cannot give better performance than stable LTI compensators. In the development, a
means to evaluate the second partials of functions with respect to matrix valued
parameters is introduced. These techniques can be trivially modified to deal with
problems involving optimizing decentralized controllers for systems with fixed modes.

2.  Fault Detection and Distributed Detection Filters

2.1 A Generalized Least-Squares Fault Detection Filter

A fault detection and identification algorithm is determined from a generalization of the
least-squares derivation of the Kalman filter [5, Appendix E]. The objective of the filter
is to monitor a single fault called the target fault and block other faults, which are called
nuisance faults. The filter is derived from solving a min-max problem with a generalized
least-squares cost criterion which explicitly makes the residual sensitive to the target
fault, but insensitive to the nuisance faults. It is shown that this filter approximates the
properties of the classical least-squares fault detection filter such that in the limit where
the weighting on the nuisance fault is zero, the generalized least-squares fault detection
filter becomes equivalent to the unknown input observer where there exists a reduced-
order filter. Filter designs can be obtained for both linear time-invariant and time-varying
systems.

2.2 Robust Multiple-Fault Detection Filter

A new robust multiple-fault detection and identification algorithm is proposed [6,
Appendix F]. Different from other algorithms which explicitly force the geometric
structure by using eigenstructure assignment or geometric theory, this algorithm is
derived by solving an optimization problem. The output error is divided into several
subspaces. For each subspace, the transmission from one fault, denoted the associated
target fault, is maximized, and the transmission from other faults, denoted the associated
nuisance fault, is minimized. Therefore, each projected residual of the robust multiple-
fault detection filter is affected primarily by one fault and minimally by the other faults.
The transmission from process and sensor noise is also minimized so that the filter is
robust with respect to these disturbances. It is shown that this filter approximates the
properties of the restricted diagonal filter of which the Beard-Jones detection filter is a
special case. In the limit where the weighting on each associated nuisance fault
transmission goes to infinity, the geometric structure of the restricted diagonal detection
filter is recovered. When it is not in the limit, the filter only isolates the faults within
approximate invariant subspaces. This new feature allows the filter to be potentially
more robust since the filter structure is less constrained. Filter design can be obtained for
both time- invariant and time-varying linear systems.

2.2 Optimal Stochastic Fault Detection Filter
A fault detection and identification algorithm, called optimal stochastic fault detection
filter, is determined [7, Appendix G]. The objective of the filter is to monitor a single
fault called the target fault and block other faults, which are called the nuisance faults in




the presence of the process and sensor noises. The filter is derived by maximizing the
transmission from the target fault to the projected output error while minimizing the
transmission from the nuisance faults. Therefore, the residual is affected primarily by the
target fault and minimally by the nuisance faults. The transmission from the process and
sensor noises is also minimized so that the filter is robust with respect to these
disturbances. This filter is a special case of the detection filter of [6, Appendix F]. It is
shown that this filter approximates the properties of the classical fault detection filter
such that in the limit where the weighting on the nuisance fault transmission goes to
infinity, the optimal stochastic fault detection filter becomes equivalent to the unknown
input observer. However, the nuisance fault directions and their associated invariant ZEero
directions must be included in the invariant subspace generated by the optimal stochastic
fault detection filter. The asymptotic behavior of the filter as the weighting on the
nuisance fault transmission becomes large is determined by using a perturbation method
and it is shown that the geometric structure of the unknown input observer is recovered.
Filter designs can be obtained for both time-invariant and time-varying systems.

2.3 Fault Reconstruction from Sensor and Actuator Failures
An approach for reconstructing sensor and actuator faults from the residual is proposed
[8, Appendix H]. The transfer matrix from the faults to the residual is derived in terms of
the eigenvalues of the fault detection filter associated with the invariant subspaces of the
fault and the invariant zeros of the faults. For each fault, all possible fault reconstruction
processes are derived parameterized by applying a projector to the transfer matrix and
taking its inverse. Then, the optimal fault reconstruction process is determined by
minimizing the ratio of the H, norm of the projected transfer matrix from the disturbance
to the H, norm of the projected transfer matrix from the fault. For the existence of the
fault reconstruction process, the invariant zeros of the fault have to be in the left half

plane. Furthermore, for reconstructing a sensor fault, the system has to be detectable
with respect to the other sensors.

2.4 A Decentralized Fault Detection Filter
The decentralized fault detection filter has a structure that results from merging
decentralized estimation theory with the game theoretic fault detection filter [9, Appendix
I]. A decentralized approach may be the ideal way to health monitor large-scale systems,
since it decomposes the problem down into (potentially smaller) “local” problems. These
local results are then blended into a “global” result that describes the health of the entire
system. The benefits of such an approach include added fault tolerance and easy
scalability. An example given at the end of the paper demonstrates the use of this filter
for a platoon of cars proposed for an advanced vehicle control system.

2.5 Application of Detection Methods to Target Association
A residual-based scheme for solving the radar track association problem using bearings-
only measurements is developed [10, Appendix J]. To accomplish track association
between two stations, we analyze the residuals of a bank of nonlinear filters called
modified gain extended Kalman filters (MGEKFs). Once tracks have been associated
between two stations, tracks from additional stations may be associated with tracks from
the first two stations by checking algebraic parity equations. Traditional track association




methods rely on the local stations’ estimated target positions and error variances, which
may be quite inaccurate when using bearings-only measurements. Our method bypasses

this difficulty, since our filters use raw data from two stations. An example illustrates the
effectiveness of our methods.

3 Nonlinear Estimation Applied to Relative GPS Navigation

3.1 Exact Statistical Solution of Pseudorange Equations
Although the exact GPS solution proposed by Bancroft is nonlinear, it may be
manipulated into a linear form when 5 or more satellites are visible [11, Appendix K].
This linear form is exact, as opposed to the linear solution obtained via repeated
linearization in the iterated least squares (ILS) method. By virtue of this exactness, the
solution of the linear form is always the true user position, while the ILS may converge to
an incorrect solution (this is especially common when the GPS user is in space).

When the measured pseudoranges are noisy, the linear structure ensures that the position
estimate will converge to the correct value and that the error covariance of the estimate is
known, guarantees that have not been found for nonlinear estimators that use the Bancroft
solution directly. The conversion to the linear form excludes information present in a
single scalar nonlinear measurement equation. We demonstrate several procedures for
refining the linear estimate with this remaining information. In addition, we show that
the methodology developed for direct GPS solutions can be applied to create linear direct
methods for differential GPS problems.

3.2 Multiple Hypothesis Sequential Probability Ratio Tests for Resolving Integer
Ambiguity in GPS

Two statistical techniques appropriate for the "validation" of integer ambiguities and the
detection of cycle slips are developed [12, appendix L]. The multiple hypothesis Wald
sequential probability ratio test (SPRT) can find the conditional probability that each set
\ of integer biases under consideration is the true bias condition. The multiple hypothesis
Shiryayev SPRT determines the conditional probability that the integer biases have
jumped from the nominal bias condition to each member of a collection of other bias
conditions. Hence, the Wald SPRT is a method for validating the integer ambiguities
during the initial ambiguity resolution, while the Shiryayev SPRT can be used to monitor
for cycle slips. Each of these multiple hypothesis SPRTs (MHSPRTs) makes use of two
measurement residuals.  One is geometric combination of the carrier phase

measurements, and the other is generated by differencing the carrier phase measurements
with code measurements.

Prior work on cycle slip monitoring has focused solely on the detection of the occurrence
of a cycle slip in the fastest time, balanced against the probability of issuing a false alarm.
Once a disruption has occurred, the ambiguity resolution process must restart from
scratch. The Shiryayev SPRT bypasses this problem, as it announces the location of the
biases after the jump, in addition to the time of the cycle slip. The calculations for the
MHSPRTSs are not linked to any particular distribution, unlike prior efforts. Only the
probability density functions of the measurement residuals are required. Hence, the
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techniques can correctly compensate for non-Gaussian errors in measurement such as
multipath. For each hypothesis under consideration, the MHSPRT yield the probability
of that hypothesis being the correct one. The "state" of the MHSPRT recursions is the
vector of all of these probabilities. Information from past measurements is embedded in
this state. This recursive, probabilistic framework makes it very straightforward to add
new hypotheses into the set of possible bias conditions while retaining information from
prior measurements. In contrast, there is no way to do this for other techniques, since
they are based on cumulative sums. Results from successful simulations and field
experiments show the efficacy of these techniques.
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Abstract. A simple decentralized stochastic control problem is considered where the nonclassical
nature of the information pattern is induced by the uncertainty on the information transmission in
the system. This is, in fact, a reformulation of the Witsenhausen counterexample, where the first
station is allowed to send its information to the second station through a noisy channel. Nonconvexity
of the problem in this new formulation has been established, and it is shown how this formulation
relates to a classical problem and the Witsenhausen problem, respectively, when the transmission
noise intensity goes to zero or infinity. Assuming small transmission noise intensity, we then use an
asymptotic approach in order to find an approximated cost. A necessary condition for asymptotically
optimal strategies has been obtained using a variational approach, and it is shown that the linear
strategies, with slightly different coefficients than the noiseless transmission case, satisfy the necessary
condition. '
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1. Introduction. Coordinating and controlling dynamic systems in spatial net-
works has always been a challenging problem for system designers. It is now attracting
more attention as various new applications are emerging in a very wide range from au-
tonomous vehicles in formation to fiow and congestion control in computer networks.
However, there are still some major difficulties in dealing with such systems. The
main characteristics of any decentralized system is that the information is distributed
among different stations and the performance of the system depends highly on the
corresponding information pattern, i.e., who knows what and when. The stations may
communicate with each other possibly by signaling through noisy channels. Even

. though there might be some physical constraints on the information structure of the
system (e.g., locations of the sensors, the actuators, and the transmitters), in general,
an optimal information pattern should be obtained. Then, based on the locally avail-

N able information, a set of coordinated local strategies should be designed in order to
achieve a common objective. In many cases, however, we will end up with nonconvex
functional optimization problems, which are usually very difficult to solve.

One such class of problems is when a decentralized system has a nonclassical
information pattern which is not partially nested. The information pattern is called
nonclassical when the distributed stations do not have access to the same information
and/or some stations do not have perfect recall (i.e., they lose information). Moreover,
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a nonclassical information pattern is not partially nested when some stations cannot
reconstruct the previous actions of other stations which have affected their own local
information. Unfortunately, this happens in many decentralized systems.

In 1968, Witsenhausen provided a simple example in [1] in which there are only
two stations, the dynamics are linear, the underlying uncertainties are additive and
Gaussian, and the cost is quadratic. The information pattern, however, is nonclassical.
This example motivated much research on the links between decentralized stochastic
control problems and team theory and the effects of different information patterns on
decentralized systems. Although it is a very simple example, it demonstrates the main
difficulties induced by nonclassical information patterns. In this example, one station
acts first and affects the information available to the next station, while there is no
way for the second station to determine the action of the first station. The existence
of the optimal design was established in [1], where a nonlinear set of strategies was
also proposed which showed that no affine strategy could be optimal.

This seemingly simple example, which is also called Witsenhausen’s counterexam-
ple, turned out to be extremely hard. It is still outstanding after more than 30 years.
It was later shown in [2] that when the uncertainty on the information available to
the first station is small, linear strategies would still be optimal over a large class of
nonlinear strategies. Intuitively, when the uncertainty on the information of the first
station is small, the second station will also be able to guess what that information
was. Therefore, since the problem is cooperative in the sense that the stations are
aware of each others’ strategies, the second station can almost reconstruct the action
of the first station, and there is no need for any kind of signaling among the stations
through the dynamics of the system. In Witsenhausen’s problem, the nonclassical
nature of the information pattern is a result of the fact that the information available
to the first station is completely inaccessible for the second station. However, recent
advances in computing and communication technologies make it possible for the sta-
tions in many decentralized systems to communicate different pieces of information.
But communications can never be perfect, and there is always some uncertainty in-
volved. Unfortunately, such uncertainty will again induce a nonclassical nature on
the information pattern of the system.

In this paper, we reformulate Witsenhausen’s problem by allowing the first station
to communicate its information with the second station through a noisy channel. Then
we show that as long as there is noise in the transmission, the main difficulties will
persist. Specifically, the cost might still be nonconvex with respect to the strategies.
We then consider the two limit cases where the transmission uncertainty becomes
either very large or negligible. We show how this new formulation covers a wide
range of problems, from the classical linear quadratic Gaussian (LQG) problem to
the Witsenhausen counterexample.

When the transmission noise intensity is small, one would expect the optimal
strategies to be very close to the corresponding strategies for the noiseless transmission
case. Our next objective in this paper is to investigate this case through an asymptotic
analysis.

In section 2, we present the problem formulation. In section 3, we obtain an alter-
native form for the performance index, which clearly shows the possible nonconvexity
of the cost with respect to the strategies. In section 4, we consider the two limit
cases, i.e., when the transmission noise intensity goes to zero or infinity. In section
5 we assume a small uncertainty on the transmission and approximate the cost by
expanding it in terms of the small transmission noise intensity. In section 6, we use
a variational approach in order to find a necessary condition for the strategies that
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minimize the approximated cost. As we shall see, we will actually have a singular
optimization problem. We then show that the asymptotically optimal strategies can
still be linear with slightly different coefficients than the corresponding strategies for
the noiseless transmission case. We provide concluding remarks in the final section.

2. Problem description. Consider a two-stage stochastic problem with the
following state equations:

{2.1) Ty =T + 1,
(2.2} Ty = I — Ug,

where zg is the initial state, which is assumed to be a zero mean Gaussian random
variable with variance o2. The information pattern of the system is specified by the
following output equations:

(2.3 21 = xy,
(2.4) zgz[ o + v ]:=[Z” ]

o+ ur +v2 209

where v is the measurement noise for the second station, which is also assumed to be
a zero mean Gaussian random variable with unit variance. As we can see, the infor-
mation available to the first station is being transmitted to the second station, and the
communication uncertainty is modeled by an additive Gaussian noise v; ~ N (0, 62).
Also, g, vz, and v; are all assumed to be independent of each other. It is clear that
we have simply modeled the received information signal as the fransmitted signal
plus the Gaussian transmission noise. While this model can be quite realistic for ana-
log communication systems, it may not be well justified when digital communication
is used. In digital communication systems the signal is quantized, coded, and sent
through the channel. Still, the channel noise may realistically be assumed to be addi-
tive and Gaussian, but sophisticated modulation and coding schemes make it difficult
to assume a simple additive Gaussian uncertainty for the received information signal.
However, if we try to incorporate the quantization effects along with the bit error
probability distribution for some good coding and modulation schemes in order to
model the communication uncertainties, we will end up with models which could still
be approximated, to some degree, by simple additive Gaussian models. Moreover,
since there are already major difficulties in dealing with decentralized nonclassical
information patterns, using more complex models for communication uncertainties
may not seem very reasonable at this point. Furthermore, we believe that the results
obtained under such a simplifying assumption would still serve as a guideline for find-
ing the true nature of the optimal decentralized strategies. The objective is now to
design the control strategies v; and s,

(2.5) u = (z1),
(2.6) uz =72 (22),

in order to minimize the cost function
2.7 J = E [k + 23],

where k% > 0 is a given constant. Note that this is a sequential stochastic control
problem in the sense that the second station acts after the first station. In other words,
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—§ =584, ~ Ty — G(DICIV~'C,D,) ' DICTV~1C,]
+[Ay -T -G D'§C§V’ICZDE}"1D§C§V'1C1}TS_
+S[—N1QNT + G(DICTV~1C,D,) G118 — CTA™V ™A C, (23)

By substituting (21) and (22) into (20a), the reduced-order limiting generalized least-squares fault
detection filter is

= (A0 =T 1A + M+ [G,(DICTV 1 C,D,) 1 DICIV ™" + §~ 1 CTH™Y ~ B (y— Cofy)
‘ (24)
Neté that I';; can be computed a prs’ar:’; In the limit, the residual (3) becomes
r=H(y — Cyy) (25)
because AC, = 0 from (21) and Ker A = Ker A.

7. EXAMPLE

In this section, two numerical examples are used to demonstrate the performance of the
generalized least-squares fault detection filter. In Section 1.1, the filter is applied to a time
-invariant system. In Section 7.2, the filter is applied to a time-varying system.

7.1. Example 1

In this section, two cases for a time-invariant problem are presented. The first one shows that the
sensitivity of the filter (8) to the nuisance fault decreases when y is smaller. The second one shows
that the sensitivity of the reduced-order limiting filter (24) to the target fault increases when Q, is
larger. The system matrices are

0 3 4 o1 0 0 5
= ’} = = =
A=i{1 2 34, C [ﬂ 0 1} Fi=j0], F,=1

0 2 5 , i 1

In the first case, the steady-state solutions to the Riccati equation (9) are obtained with
weightings chosenas Q; =1, Q, = 1, and ¥ = I when y=10"%and 107¢, respectively. The top
two figures of Figure 1 show the frequency response from both faults to the residual (3). The left
one s y = 107% and the right one is y = 107, The solid lines represent the target fault, and the
dashed lines represent the nuisance fault. This example shows that the nuisance fault transmission
can be reduced by using a smaller y while the target fault transmission is not affected.

In the second case, the steady-state solutions to the reduced-order limiting Riccati equation
(23) are obtained with ¥ = 10™*I when @, = 0 and 0.0019, respectively. The lower two figures of
Figure 1 show the frequency response from the target fault and sensor noise to the residual (25).
The left one is Q; =0, and the right one is ©Q, =0.0019. The solid lines represent
the target fault, and the dashed lines represent the sensor noise. This example shows that the

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747-757
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Figure 1. Frequency response of the residual.

sensitivity of the filter to the target fault can be enhanced by using a larger Q,. The sensor noise
transmission also increases because part of the sensor noise comes through the same direction as
the target fault. However, the serisor noise transmission is small compared to the target fault
transmission. In this case, the nuisance fault transmission stays zero and is not shown in these
figures. Note that when Q, = 0, the generalized least-squares fault detection filter is similar to
Reference [2] which does not enhance the target fault transmission.

7.2. Example 2

In this section, the filter (8) and the reduced-order limiting filter (24) are applied to a time-varying
system which is from modifying the time-invariant system in the previous section by adding some
time-varying elements to 4 and F, matrices while C and F, matrices are the same:

—cost 3+ 2sint 4 5 —2cost
A= 1 2 3—2cost{, F,= 1
Ssint 2 54+ 3cost 1+sint

The Riccati equation (9) is solved with 01=1L0,=1,V=TIandy=10"5for t€f0, 25]. The
reduced-order limiting Riccati equation (23) is solved with the same @, and V. Figure 2 shows the
time response of the norm of the residuals when there is no fault, a target fault and a nuisance
fault, respectively. The faults are unit steps that occur at the fifth second. In each case, there is no
sensor noise. The left three figures show the residual (3) for the filter (8). There is a small nuisance
fault transmission because (8) is an approximate unknown input observer. The right three figures
show the residual (25) for the reduced-order limiting filter (24). Note that the nuisance fault

transmission is zero. This example shows that both filters, (8) and (24), work well for time-varying
systems. ' '

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747-757
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Figure 2. Time response of the residual.

8. CONCLUSION

The generalized least-squares fault detection filter is derived from solving a min-max problem
which makes the residual sensitive to the target fault, but insensitive to the nuisance faults. In the
limit where the weighting on the nuisance faults is zero, the filter becomes equivalent to the

~ unknown input observer which places the nuisance faults into a minimal (C, Aj)-unobservability

subspace and there exists a reduced-order filter. Since the target fault is explicit in the problem
formulation, the sensitivity of the filter to the target fault can be enhanced. Filter designs can be
obtained for both linear-time-invariant and time-varying systems.
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the order in which the stations apply their control actions does not depend on the
uncertainties in the system. We see that the first controller has perfect information
but its action is costly. In contrast, the second controller has inexpensive control but
noisy information. Since the second station does not know what the first station knew,
due to the transmission noise, we do not have perfect recall, and hence we still have
a nonclassical pattern. If there was no transmission noise, we would have a classical

information pattern for which the unique optimal strategies are known to be linear in
the information.

3. An alternative form for the performance index. In this section, we
show how the performance index may be expressed in terms of the Fisher information
matrix, which indicates that the cost may not be convex in the strategies.

For simplicity, and similarly to the Witsenhausen problem, we define

(3.1) fz)=2z14m (zlj =z + u1,
(3:2) 9(22) == 72 (22) = ua.

Then the cost can be expreésed as
J = E [k} + 23
= B[F* (s~ £ (1)) + (F (21) — 9 (22))?]
(33) =J(f,9).

If we fix the function f, the optimal strategy g will clearly be obtained as the condi-
tional expectation, i.e.,

(3.4) 9" (z2) = argm!}n.](f, 9) = E[f (1) |22].
Substituting the above equation back in the cost, we get
T =T ()
= BB (21~ £ ()] + B [(f (1) - 6" (22))"]

(35) = KE (21— £ ()’ + E [ (20))*] - B[ (6 (22)?],
where we have used the orthogonality property of the conditional expectation
(3.6) E[(f(z1) — g" (22)) ¢" (22)] = 0.

It is important to note the minus sign in the third term in (3.5). As we shall see,
this minus sign could indeed destroy the convexity of the cost with respect to the
strategies.

The objective is now to express the cost J*(f) in terms of only one strategy f.
In doing so, we use the following lemma, which shows how ¢* (2;) may be expressed
in terms of information 2; and its probability density function.

LEMMA 3.1. The optimal strategy g* (22) can be expressed as

]
3.7 ¢ (%) = 702 + o Inp{z),
z22

where p(2z2) = p (221, 222) is the probability density function for the information avail-
able to the second station.
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Proof. We have

¢ 6 = [ 1w 1) da

_JFz)p(2, ) da
(38) B .I‘P (le 22) &‘-Zl ’

where p (21, 22) is the joint probability density of z; and z;. At the same time, one
can write

a

(3.9 F(z1)p(21,22) = 220p (21, 22) + o (21,22) .
Z22

This can be shown as

8 g
2090 (21, 22) + 5—p (21, 22) = 2220 (21, 22) + 5P (22 |21 ) p (21)
Bzg0 Oz

= zzgp(z"z2)+é'§i_2p(”‘*”3 ({ Z; }——[ féﬂ D p(z1)

2 2
= 290p (zl,z2)+afz (%& exp (__ (zzzz;zz) _ (222 —5(31}} )) »(z1)
(3'10) = f (zl)p (213 '32) 1

where we have used the specific form of the information available o the second station
and the fact that v; ~ N (0, €?) and vy ~ N(0,1) are independent. By substituting
for f(21)p(21,22) from (3.9) back in (3.8) and integrating with respect to z, the
expression in (3.7) is obtained. O

As we shall see, when we try to express the performance index in terms of only a
single strategy f, a Fisher information term comes up in the cost. Fisher information
is originally obtained in the Cramer—Rao bound, which is a measure for the minimum
error in estimating a parameter based on the value of a random variable. However, by
introducing a location parameter, an alternative form of the Fisher information may
be defined for a random variable with a given distribution. This alternative form is,
in fact, related to the entropy measure (see [3, p. 494]). We first present the definition

. for the Fisher information matrix.

DEFINITION 3.2. The Fzsher information matriz for a random vector Z is de-
fined as

(3.11) I;(Z2) = E[VInp(z) - V.Inp(2)],

where p(z} is the probability density function for the random variable Z and YV, de-
notes the gradient vector with respect to z:

a 7
(3.12) V= {5;; ‘e '{.E] )

where z; s the ith component in the random vector.
‘We are now ready to present the alternative expression for the performance index.
THEOREM 3.3. The performance index (3.5) can be written as

(313) J() = KB [(z1 = £ (@)*] +1- I (Za) s,
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where I (Z3),, i3, in fact, the (2,2) element of the Fisher information matrix for the
random vector Zz. The subscript f indicates the fact that it actually depends on the

form of the strategy f, which is present in the definition of zo and would affect its
probability density function.

Proof. Using (3.7), we first obtain E[(g*(22))?]. We have
(3.14) E 5] = B[(f (20))°] +1,
and
a8 +oo 8
(3.15) E [zzg—— Inp (zg)] = / / 2207~ In (p (221, 222)) p (221, 222) dz21d207.
Oz22 N ,

I we integrate by parts with respect to zy;, we get

400 +00
z25 — In (p (221, 222)) p (221, 222) d222 = 200p (221, 222)| 73 — / P (221, 222) dzo
—00 222 —00
(3.16) = —p(z21),

where 235 is assumed to have a finite mean value, and therefore the first term becomes
zero. Hence,

(3.17) E [zma_i_; Inp (zg)] —
Therefore,

(3.18) B (¢ ()] = =1+ B (£ ()] + 11 (Z2)y
where

(3.19) It (Za)y, = E [(% In p(zg)) 2} )

Substituting (3.18) back in (3.5), we get (3.13) as an alternative form for representing
the performance index. 1)

As we see, the cost is now expressed only in terms of one strategy f. Also, this
somehow shows us that in order to minimize the cost, we need to get the lowest possible
cost associated with the first station, while we transfer as much information as possible
to the second station through the dynamics of the system. The possible nonconvexity
of the cost with respect to f can also be seen from this alternative expression. It
can be shown that the Fisher information term is a convex functional [4]. Therefore,

1 — If (Z3),, is concave and the sum of a convex and a concave functional may not
be convex.

4. Limit cases. In this section we consider the two limit cases. First we consider
the case where the transmission is noiseless, and then we investigate the case where
the transmission noise intensity goes to infinity.
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4.1. Noiseless transmission. Assume there is no uncertainty in transmitting

information from the first to the second station, i.e., ¢ = 0 and hence z; = z;. In this
case, we have perfect recall and the information pattern is classical. We can write

P (22) = p (221, 222) = p (222 | 201) P (221)

(41) = p(ema 1) p(er) = = exp (~ o — f 1) )p<z1}.

Then, from (3.7), we have ;

(4.2) 9" (z2) = f (z1) = f (221),

which could directly be obtained from the original definition for ¢*, ie.,
(4.3) 9" (22) = E[f (z1)| z2] = £ (=),

because z; is exactly known when z; is given.  Substituting this back in (3.5) and
minimizing with respect fo the strategy f, we have

(4.4) 9" () = f (=) = 21,
and hence

(4.5) T(21) =0,

(4.6) ) T2(22) = 21,

which is the unique linear set of optimal strategies. This indeed turns out to be a
very simple example of the well-known classical LQG problem.

4.2. Infinite transmission noise intensity. Another limit case is when the
transmission noise intensity increases to infinity. In this case, 2z0; and zoo become
independent and we have

@47) p(22) = p (221, 722) = p (z21) p (222) .

The Fisher information term can now be written as

+00 8 2
I (Z2),, = f /_ - (-552'; ln?(zzl,zzz}) p (221, 222) dz21d2a2

+oa g 2
=[—oc (522 Inp (222)) P (222) dz22
(48) =I(Z),

which is indeed the Fisher information content of 255 only. Hence,

(4.9) T =FE |G - f (20))*] +1 - I (Zz2).

This is the same result that was presented for the Witsenhausen counterexample in [1].
Intuitively, when we have infinite transmission noise intensity, we might as well deny
the access to z; for the second station, and this is exactly the case in Witsenhausen’s
counterexample. The optimal strategies for this case are still unknown. Witsenhausen




showed that the optimal solution exists, even if zq has a general distribution with a
finite second moment [1]. He then showed that if one of the strategies is restricted to
being affine, the other optimal strategy would also be affine. But then he provided a
set of nonlinear strategies that could achieve a lower cost for some values of k2 and
ag-

Different approaches have been taken in order to find the optimal strategies. As
mentioned before, an asymptotic approach was used in [2] for the case where op is
small. More recently, in [5], [6], [7] it was shown how a neural network, trained by
stochastic approximation techniques, can be employed as a nonlinear function approx-
imator in order to approximate f (z1). It was demonstrated that the optimal f* (z;)
may not be strictly piecewise, as was suggested by Witsenhausen, but slightly sloped.
Some researchers have tried to attack the problem numerically and use some sample
and search techniques to find the solution. A discretized version of the problem was
formulated in [8], which was later shown in [9] to be NP-complete and computation-
ally intractable. It is recently asserted in [10] and [11] that a global optimum would
be achieved by searching directly in the strategy space using the generalized step
functions to approximate f(z;).

So far we have shown, through a simple example, how any uncertainty in the
transmission of information between the stations in a distributed system can make
the optimal control design very complicated and even intractable. Then, by consid-
ering the two limit cases, we showed how our example covers a very wide range of
scenarios. Namely, we saw that for the noiseless transmission case, the unique optimal
strategies, which are linear in the information, are easily obtained, whereas for the
infinite transmission noise intensity, the optimal strategies are still unknown. Now a
very feasible case to investigate is when the uncertainty on the information transmis-
sion is small. In fact, when the transmission noise intensity ¢ is small, one would still
expect behavior similar to the noiseless transmission case for the optimal strategies.
In the following sections, we consider this case. Namely, we assume a small intensity
for v;. Under this assumption, we obtain the first few terms in the expansion of the
performance index in terms of e. We then use the Hamiltonian approach in order to
find a necessary condition for the strategies that minimize the approximated cost.

We show that the linear strategies, with slightly different coefficients than the
corresponding coefficients for the noiseless transmission case, do indeed satisfy the
necessary condition. This asymptotic analysis not only gives us insight on how the
optimal strategies change as the transmission uncertainty is introduced but also pro-
vides us with a better sense of the complexities in the design procedure.
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l

5. An expansion for the cost. Assume that the first station communicates
with the second station through a low noise channel. In other words, the transmission
noise intensity € is assumed to be small. In this section, we will find an expansion for
the cost in terms of €. For this purpose, we first find an expansion for the probability
density function of the information available to the second station, i.e., p {(22). Then
we use (3.7) in order to find the corresponding expansion for ¢* (z;). By substituting
back in (3.5), we will obtain the expanded cost only in terms of f.

The probability density function for 23 can be written as

+o0
(5.1) DPe(22) i=p(22) = f_ D (%22, 221, 21) dzy
(5.2) = /fm p (2221221, 21) p (z2121) p (1) d2s
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400 ’
(53) = f P (2z22]z1) p (221]21) p (21) d2
-0
+o0
64 = [ plnla)p (o - 2)p () dos
-0
too (220 — £ (1))? 1 (221 — 21)?
55 = ——exp|-— e n)
Gy =], & ( 2 ) Ve oP\ T 2o

X ! ex ( 7 ) dz

——= | dz

F_Q?FG'Q P 20’3 1y

where for (5.3) we have used the facts that the o-fields generated by {z21,21} and
{z1,v:} are the same and z;, v, and vy are mutually independent. At this point,
one should note that even though the joint probability density function p (222, 221, 21)
can be explicitly expressed as in {5.5), introduction into the performance index shows
that determination of f (z;) still requires averaging over all random variables. This
is another way of looking at the effect of a nonclassical information pattern, which is
not partially nested. We therefore decide to follow an asymptotic approach.

For small ¢, we now approximate Inp, (23) by considering only the first three
terms of its expansion around € = 0. Namely,

8 8
(5.6) Inpe (z2) ~ Inpg (z2) + 5 Inpe (22) €+ 32 Inpe (25)| . €.
e=0 =0

By making the change of variables
5.7) €y := 21 — 221 = edy = dz1,

we can write pe (22) in the following form:

(5-8) Ppe(z2) = :

+oo g (722 — }Fe(y))g 1 (221 +ey)®) 1 2
where
(5.9 ‘ Fe(v) = f(ey + z21) -

It is now clear that

2\ 2
(5.10) po (22) = \/155 exp (__ (222 — .?;{321}} ) \/_2_11;60 exp (_%) ’

and hence
_ (2= fl(z20))® 1
(5.11) Inp {22) = 5 D +hn mos )
For the first order term, we have
a 1 o
5.12 —Inp (= = — —p. {2
( ) De ?e( 2) o Do {32) 86335( 2) o
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On the other hand,

o +00 ] 1 299 — e (1))? 1 _ (=21 +ey)? 1 2
-Pe (22) = / —{ e T e % ——e‘%dy
e =0 —oo O€ | V21 V2raoy {zaw’zﬂ-
oo g emereay? 1 -3p 1 2
= {200 — fz (2 e__zz_gu_L o 292 %
j:m 217( 22 = f (221)) yf' (221) Taron wors y
+/+°° [ QCIEC| (_fﬂ) e—% 12, 4
—eo V21 V2roq 03 4 27 Y
(5.13)
Therefore,
(5.14) o Inpe (22) =0
" 3{ Pe 22 o = .

We could somehow expect this result. This is because we would expect the behavior
of pe (22) to depend only on the variance of the Gaussian transmission noise, i.e., €2
Using (5.14), we can now obtain the second order term as

1 82
= ——)' a_eg-pe (22)

52
(5.15) 32 Inp, (22) i = =

=0

After some tedious but straightforward manipulations, we get

o .
§_£2 Inpe(22)| = —F2(z21) + f" (z21) (222 — f (221)) + £ (221) (222 — f (221))?
=0
1 2
(5.16) | + 21" (221) (222 — f (221)) (“%) T 22 + zgig'

We can now obtain a second order approximation for Inp, (22) by substituting the
corresponding terms from (5.11), (5.14), and (5.16) back into the expansion (5.6). In
the next step, we substitute the expansion for Inp, (2) in (3.7) in order to find the
corresponding expansion for g* (22). Remember that g* (22) is the optimal strategy
for the second station, assuming that the first station has a fixed strategy v; {z1) =
f(z1) — z1. We have

a
9" (22) = 202 + 52—2;1HP(32)

d . 8 [ 8 '
™ 299 + o Inpg (22) + ¢ B (gg Inpe (22)

e=€$)
= 222 — (222 — f (221))
(5.17) + € [f " (z21) + 2™ (221) (222 — f (221)) + 2f' (221) (—%)] .

0

Our goal is to get an expansion for the cost, which as we know from (3.5) can be
written as

618 I =RE [ f @] + B[ @] - B[6 @)
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Using the expansion for g* (z2) from (5.17}, we have
B((6" 2)?] = B (7 (z2))]
(5.19) +2¢’E [_f (z01) (f" (221) + 2" (221) (222 — f (221)) + 2f' (221) (‘%))} )

where we have neglected the fourth order term in e. Substituting this expansion back
in (5.18), we will obtain the following expansion for the cost:

T =KE [~ F @) + B [(f 20))°] - B [(f (20))?]
(5.20) —26’E [f (221) (f” (221) +2f (221) (222 — f (221)) + 2f (221) (“%)):{ }

Note that when the transmission is noiseless, i.e., € = 0 and therefore z3; = z;, we
have

(5.21) J() = KB [ - f (@),

and f(z;1) = z; is the obvious unique optimal solution. The above expansion, how-
ever, is not exactly in our desired form yet. This is because the third term on the
right-hand side, which is an average over 2, still depends on ¢. We shall now rewrite
the expansion in (5.20) by explicitly expressing the expectations based on the corre-
sponding probability densities:

7= [ #6107 + £0] S Ha

toor ~ t )} 1 —7%5
2 2 4 ! 2{c2+¢
— i)+ 2¢ i t)—2F(t t)— || ——=¢ o dt
[ [rove (sore-2orof)] e
+oo  ptoo 1 or® 1 -
5.22) — 42 f(1) F2(8) (r — f(2)) ——e~ 52 e *odtdr,

62) - [ [ alrore - 1e) o= o

where we have substituted p(22) = p (222, 221) = po (22) in the third term, since the
higher order terms would be multiplied by €2 and would then be neglected. Now the
third term turns out to be zero, because

+o0 +00 e Py
f- /_ 452]?(15).5’2@)'(1' i) \/%e_i_%{_& \/.2%003 o
_QL:,

400 +00 2
- [ m 4e2f(t)f’2(t)-—\/2_1??—?8e ; ( /: 0 \/—Iz_;e-‘—’fm—da—) dt = 0.
(5.23)

At the same time, we can expand the probability density of zg; up to the second order
in €. It is actually straightforward to obtain

Z
1 Ay 1 -5 1 -2
5.24) —————p Nt o 2 4 2 2 —o2)e %%,
(5.24) V27 (02 + €2) Voroy V2rof ( o)
Substituting (5.23) and the above expansion back in (5.22) and neglecting the higher
order terms in €, we can finally get the following expansion for the cost:
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() = / = [kt~ r)y?] L7y

oo V2mag
400 t 5.2 _ t2 1 12
2 i 1" 2 1] 20
wé [ luorog-aoro+ rotst] Lot

(5.25) :=J3 +€J;.

The objective is now to obtain the function f, which minimizes the above ap-
proximated cost. In the next section, we use a variational approach in order to find a

necessary condition for such a function and show how the linear strategies still satisfy
this necessary condition.

6. Minimizing the approximated cost. So far, we have obtained an expan-
sion for the cost assuming that the transmission noise intensity is small. We have, in
fact, approximated the cost by including only up to the second order term in e. We
should now try to minimize this approximated cost in order to find the asymptotically
optimal f*. Obviously, this strategy would be optimal only for a small transmission
noise intensity. However, it would still be very helpful for the analysis of the behavior
of the optimal strategies when we deviate a little bit from the classical information
pattern by introducing a small communication uncertainty.

We now use the Hamiltonian approach in order to find the necessary conditions
for the function f(t), which minimizes our approximated cost. For simplicity, denote

(6.1) z1(t) = f(t),

62 za(t) := &1 (2) = f'(2),

(6.3) u(t) = 22(t) = £1(t) = £(¥),
1 -2

(6.4) p(t) :== \/@;«:’ae o.

The Hamiltonian is then defined as [12]

H=k -z (t))2 p(t) + €2 (4:1:1(t)x2(t);—§ — 2z (t)u(t) + z2(t) ﬁg;é tg) p(t)
(6.5)  +Ai(t)z2(t) + A2(t)ult),

where A; and A; are the Lagrange multipliers that should satisfy

M) = —Hs,

(6.6) = (2;92 (t—21(t)) — 43z, (t}‘-;g- — 2z, (1) “50% 2. z&g(t)) (t),
Ao(t) = —Ho,

©.7) = —4z,(2) ;%p(t} — M)

But as we can see, the Hamiltonian is linear in u(t) and we actually have a singular
optimization problem. The singular surface will be characterized by setting H,, and
its derivatives with respect to ¢ equal to zero, that is,

(6.8) Hu = —26221 (t)p(t) + A2(t) = 0,
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and
d 2. 2 . ;
(6.9) 7 e = —26° 21 ()p(t) — 221 ()p(F) + Ao (t) =

Substituting p(f) = —;tar;t(t) and also Ay from (6.7), we get

d

(6.10) = Ho = ~222,(0p(t) - 252m1(t)§§p(t} — () =0.

Differentiating again and substituting A; from {(6.6), we have

(6.11) ;%‘H —4e%u(t)p(t) + 4€ m;(t)p(t) 2k% (t — 21 (t)) p(t) =

Therefore, the corresponding u(t) on the singular surface is

t  k?
(6.12) u(t) = mz(t)’gg — 5z - ().

Note that the first order generalized Legendre-Clebsch condition, which is a necessary
condition for u(t) to be minimizing on the singular surface, is also satisfied, namely,

8 (d?
613 2 (£n)<o

Therefore, the corresponding z; (¢) and z2(t), which minimize our approximated cost,
should necessarily satisfy the following differential equations:

(6.14) @1(t) = 2a(t),
2
(6.15) i(t) =m2(t>§g -y b= aa(®).

Since ¢ is assumed to be small, we may assume the following form in order to obtain
the solutions for the above differential equations:

(6.16) )= (t)+62a2(t)'+e4a.4(t)+
(6.17) xg(t) bo(t) + €2ba(t) + 4by(t) + - -

k Interestingly enough, by substituting the above x; and z, back into the differential
equations and comparing the coefficients of the terms with the same order in €, we get

(6.18) i (t) = [ ;32 22 ‘L(kzz;) (kii%) ] (H % )

kﬂﬁ

Back to our original notation, we actually have

(6.19) flz) = (

262
1 k2o2

As we can see, the solution is still linear with a coefficient which is slightly different
than the corresponding coefficient for the noiseless transmission case. Remember that
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f(21) = z1 is the optimal solution when there is no transmission noise, and note that
for € = 0 in (6.19) we get exactly the same solution as expected. Given the above
function f(z1), the corresponding g* (2;) can easily be obtained using (3.4). Note
that it will also be linear because of the Gaussian assumption for the underlying
uncertainties.

We could somehow expect the optimal strategies to be linear from the beginning.
As we mentioned in section 2, linear strategies were shown to be asymptotically opti-
mal for the Witsenhausen example when the uncertainty on the information available
to the first station is small {2]. In this paper, however, we have considered a refor-
mulation of Witsenhausen's problem where the first station sends its information to
the second station through a low noise channel. These two scenarios are somewhat
similar. Namely, in both scenarios, the second station can determine the information
available to the first station fairly accurately. Specifically, in the first scenario, the
second station almost knows z; because of its small uncertainty, while in the second
scenario it can determine 2; from the information that is transmitted through a low

" noise channel. ,

We would also expect the optimal strategies to approach the corresponding strate-
gies for the noiseless transmission case as the value of z; and, in some sense, the
stgnal-to-noise ratio increases. This does not seem to happen in the solution {(6.19).
One may justify this by looking at the exponential function in the cost (5.25). This
function drives the integrand of the cost to zero exponentially fast for large values of
zy. Therefore, the structure of the cost really does not force the optimal solution to
approach f{z1) = z; as z; increases.

We shall now obtain the corresponding value of the cost. Substituting f(t) from
(6.19) back into the cost (5.25), we get

2

too | ¢ 1 -
J“(f):/ k2 (¢ e 5 gt
—co 1-{*-;%,65_3- 2mog
+00 2 2 _ -2
+é 4 t i-}- : %~ t* 1 eg;gdt
22 \2 02 22 V2 ok V2ro
L () (eag) 7 "

4
=—1 (262+-4i—)

Z 22
D2 k G‘g
(1 + k "e)
4t
(6.20) 2 — ——
k202
where we have used
+o0 _ 22
(6.21) £ \/zim}e 2T dt = o2,
—00
+0co 1 _ _t_sg
(6.22) t e *6dt=305.

—00 Vv 27]'03

The optimal cost for the noiseless transmission case is zero. But if we use f (z1)==
when the transmission is noisy, we get the following cost:

(6.23) J*(f) = 262




DECENTRALIZED CONTROL WITH NOISY COMMUNICATION _ 989

In other words, if we fix the strategies to be the optimal strategies for the noiseless
transmission case while introducing a small transmission noise, the increase in the cost
will be proportional to the transmission noise intensity. However, if we use (6.19), we
can indeed improve the cost by the fourth order in e.

One should note from (6.19) and (6.20) that as the value of k%62 increases, the
asymptotically optimal solution approaches f (z;) = z;, and the change in the cost
becomes smaller. In other words, increasing k%02 has an effect similar to decreasing
the communication uncertainty. To explain this, we note from the performance index
that increasing k2 implies a more expensive control action for the first station, which,
in turn, results in smaller u;. This then implies that the information available to the
second station is less affected by the action of the first station. At the same time,
increasing o2 implies a higher level of uncertainty on zo, which, incidentally, is the
piece of information that is being transmitted between the stations.

This brings up an example of a very interesting fundamental issue: the notion of
information value and how it could be different for control and communication pur-
poses. In fact, we know from information theory that a higher level of uncertainty for
a piece of information implies a higher level of entropy and therefore a more valuable
piece of information for transmission. On the other hand, however, a more uncertain
piece of information would probably be less valuable for control purposes and would
have smaller effect on the control strategies. In other words, a control designer would
probably be willing to spend less on installing transmitfers on the stations for commu-
nicating more uncertain pieces of information. While defining a notion for the value
of information for control purposes has been occasionally addressed in the literature
for quite a long time, it still remains an open problem. This is mostly because of the
fact that the value of information for control purposes would highly depend on how

the cost is defined for the control design, and this could be quite different in various -

applications.

7. Concluding remarks. We analyzed an example of a decentralized stochastic
system. This example was a reformulation of the Witsenhausen counterexample where
the first station was allowed to send its information to the second station through 2

" noisy channel. The dynamics were linear, all the underlying uncertainties were as-

sumed to be Gaussian, and the cost was quadratic. It was shown that as soon as
any uncertainty is introduced in the communication among the stations, the infor-
mation pattern again becomes nonclassical, which is not partially nested. We then
showed how the performance index can be alternatively expressed such that the pos-
sible nonconvexity of the cost, with respect to the control strategies, becomes more
transparent. Therefore, in general, we will end up with a nonconvex functional opti-
mization problem when we try to obtain the decentralized optimal control algorithms.
We then considered two limit cases. Namely, the case where there is no communi-
cation uncertainty and the case in which the transmission noise intensity increases
to infinity. The former case was shown to be a trivial example of a classical LQG
problem, whereas the latter case corresponds to Witsenhausen’s counterexample, the
optimal solution of which is still unknown.

We then focused on the case where the communication uncertainty was small.
We followed an asymptotic approach where we approximated the cost based on its
expansion in terms of the small transmission noise intensity. We showed how mini-
mizing the approximated cost can be seen as a singular optimization problem. We
then used a variational approach in order to find the necessary conditions for the
asymptotically optimal strategies and showed that some reasonable linear strategies
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would actually satisfy those conditions. We also provided some intuitive explanations
for the behavior of those linear strategies and obtained the corresponding cost.

Note that while we have focused on the reformulated Witsenhausen counterexam-
ple, our main result is quite general. In fact, we have shown through an example that
communication uncertainties in decentralized systems generally result in nonclassi-
cal information patterns, which, in turn, can destroy the convexity of the associated
functional optimization problems. Moreover, our approach is indeed a very general
approach, which have been applied to various other problems before. More specifically,
expanding a cost function in terms of some small parameters is a common practice in
variational and perturbation-based approaches. Furthermore, using Hamiltonian ap-
proach in order to obtain the necessary conditions for the optimal strategies obviously
is not specific to our reformulated Witsenhausen problem. However, finding the exact
function (6.19), which is obtained in closed form, satisfies the necessary condition for
optimality, and shows how the optimal strategies could change upon introduction of
some communication uncertainty, could be very specific to our problem.

All the derivations and the results in this paper show some of the difficulties
involved in dealing with decentralized systems as soon as we deviate a little bit from
a classical, or at least a partially nested, information pattern. On the other hand,
even though we have modeled the communication uncertainty in the simplest possible
way, we have tried to emphasize the role of communication uncertainties in generating
such information patterns that are very difficult to handle.

Finally, it should be mentioned that even though the optimization problem is
generally difficult for this class of systems, in some applications one might be able to
exploit the specific structure of the system in order to obtain some reasonably good
suboptimal strategies, which could yield an acceptable performance.
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Abstract

1t is known that dynamic allocation of channels and power in a Frequency/Time Division Multiple Access
(FDMA/TDMA) system can improve performance and achieve higher capacity. Various algorithms have
been separately proposed for dynamic channel assignment and power control. Moreover, integrated Dynamic
Channel and Power Allocation (DCPA) algorithms have already been proposed based on simple power control
algorithms. In this paper, we propose a DCPA scheme based on a novel predictive power control algorithm.
The Minimum Interference Dynamic Channel Assignment algorithm is employed, while simple Kalman Filters
are designed to provide the predicted measurements of both the channel gains and the interference levels, which
are then used to update the power levels. Local and global stability of the network are analyzed and extensive
computer simulations are carried out to show the improvement in pérformance, under the dynamics of user
arrivals and departures and user mobility. It is shown that call droppings and call blockings are decreased

while, on average, fewer channel reassignments per call are required.

I. INTRODUCTION

With the ever increasing need for capacity in mobile radio systems, optimal allocation of resources in non-
uniform and non-stationary environments has become a great challenge. The fundamental objective is to

accommodate as many users as possible, subject to complexity and Quality of Service requirements, on a
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limited available bandwidth by controlling undesired interactions among the users. One major interaction is
the co-chanﬁelkinterfereace that every user generates for all other users, which are sharing the same channel.
Various techniques have been developed to mitigate the effects of co-channel interference. Some of these
techniques, such as sectorization and beamforming using smart antenna arrays, try to suppress interference,
while others such as channel assignment techniques try to avoid strong interferers.

Another well-known technique is to adaptively control the power levels of all the users in the network. The
idea is to keep the power level for every user at its minimum required level according to the current channel
conditions. This will eliminate unnecessary interference to other users and will also minimize the power
consumption for the user. Various power control algorithms have been proposed in the literature [1}-[12].

Our first objective in this paper is to design a distributed predictive power control algorithm. We try to

k obtain accurate enough models for the slow variations in the channel gains and the interference powers. We
then design Kalman filters for every user to obtain the one-step predicted values for both the interference level
and the user’s channel gain from its intended base station. We try to tune the filters for a typical mobile radic
environment and then conjecture and show through simulations that the filters are indeed robust under 3 broad
range of parameters such as user velocities and shadowing correlation distances. The predicted measurements
from the Kalman filters are then used in an integrator algorithm to update the power levels.

Another approach to mitigate the co-channel interference effects and increase the capacity is to avoid strong
interferers by dynamically assigning the channels to the users. Various centralized and decentralized Dynamic
Channel Assignment (DCA) schemes have been proposed in the literature [13]-[16].

It is believed that an aggressive DCA scheme can make an FDMA/TDMA system an interference-limited
system, where the number of active users is mostly limited by the interference that the users cause on each
other. On the other hand, power control schemes are known to be especially effective for interference-limited

~ systems. This has initiated research on integrated distributed Dynamic Channel and Power Allocation (DCPA)

schemes [17]-[20]. In [17] a pilot based minimum interference DCA scheme is integrated with a fast fixed-step
power control algorithm, while fast fading and user mobility effects are neglected. In [18] three different
types of minimum interference DCA algorithms are integrated with a slow integrator power control algorithm.

Pedestrian mobility along with a low power update rate are considered and it is again assumed that the fast

fading effects are averaged out. In [19] a simulation study has been performed to investigate the joint effects

of some simple SIR!-based and signal-level-based power control algorithms along with a minimum interference

1SIR denotes Signal to Interference plus Noise Ratio throughout this paper.
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channel reassignment scheme. Fast fading effects are again neglected and low power update rates are assumed.

Most DCPA schemes, havxr'ever, only consider simple power control algorithms. Moreover, except for {18}-
[19], other results neglect such effects as dynamics of user arrival or departures, user mobility, and base station
hand-offs. Our main objective in this paper is to investigate the performance of our predictive power control
algorithm when it is integrated with a minimum interference DCA scheme. We set up a system-level simulation
platform, similar to the ones presented in [17}-[18], to compare our predictive DCPA scheme with the one that
uses a simple integrator power control algorithm with no prediction. Dynamics of user arrivals and departures,
user mobility and base station hand-offs are all considered in this study. Slowly varying flat Rayleigh fading
effects are also considered in the simulations.

The organization of the paper is as follows. In the next section, we present the system model and review
some of the results in power control and dynamic channel assignment. In ‘Seetion III we elaborate on our
predictive power control design. We explain how simple ‘Kaiman filters may be designed and imp!eniented
in order to obtain the predicted measurements of both the channel gains and the interference powers. We
also show that the presented predictive power control algorithm satisfies the sufficient conditions for global
stability of the network. In Section IV we describe in detail our simulation models and in Section V we discuss
the simulation results and compare the performance of our integrated predictive DCPA algorithm with the
corresponding algorithm which uses no prediction. We show that, for a range of traffic loads, the number
of blocked calls and dropped calls are decreased under our predictive DCPA scheme. Moreover, on average,

fewer number of channel reassignments are required for every call, implying a more stable network. We will

provide concluding remarks in the final section.

11, SysTeEM MoODEL, DYNAMIC CHANNEL ASSIGNMENT AND POWER CONTROL

We consider a cellular system where the area under coverage is divided into cells and each cell has its own
base station. All users communicate with their assigned base stations through a single hop. This is in contrast
to ad hoc wireless networks where there is no fixed infrastructure and multi-hop communication is prevalent.

We focus on a Frequency/Time Division Multiple Access (FDMA/TDMA) system and only consider the
co-channel interference among the users, i.e., no adjacent channel interference is assumed. Specifically, we
assume a system-wide synchronization to the slot level so that each user will experience interference only from
the users which are sharing exactly the same slot on the same carrier frequency. This assumption implies

that large enough guard times per slot are assumed. We do not consider any blind slots in the system, that




is, we assume that any slot in a frame can be used as a traffic channel. Blind slots can be avoided either by
appropriate structuring of the control channel or by assuming that a call activity detection scheme is employed
such that the users can temporarily discontinue their transmission in their active slots. Modifying the frame
structure and considering some slots as the blind slots should not have major effects on our performance
comparisons.

We focus on the uplink channel, i.e., the channel from mobiles to base stations. Almost all the results
and discussions, however, could similarly be stated for the downlink channel. We assume a fixed-power pilot
(control) channel on the downlink. As we shall see, this channel facilitates Dynamic Channel Assignment
(DCA) and can be used by the mobiles for initial base station assignments and base station hand-offs.

We abstract the system architecture, as far as modulation, coding, etc. are concerned, and censiéervsm
as the only measure for Quality of Service (QoS) in the system. This is a common practice, even though Bit
Error Rate or Frame Error Rate are usually seen as the ultimate performance measures. The reason is that,
in general, higher SIR will result in better bit error rate performance and considering SIR as the measure for
quality of service provides us with a more convenient platform for power control design.

The received SIR on an assigned uplink channel for user i can now be written as:

ri= — 9iiDi 1)
2 i=1, i 9i3P5 + i

where p; is the transmit power for user 4, g;; is the channel gain {or attenuation) from user i to its intended
base station (in the linear scale), g;; is the channel gain from user j to the intended base station of user i and
7; is the receiver noise intensity at the intended base station of user i. Also M is the total number of users
sharing the channel. We now review the minimum interference dynamic channel assignment scheme along

with the main approaches for power control.

A. Dynamic Channel Assignment

Under a Dynamic Channel Assignment (DCA) scheme, all base stations have access to all the channels and
dynamically assign the channels to the users based on the current traffic conditions. While DCA schemes are
clearly more complicaﬁed, théy usually result in higher capacity.

We adopt a distributed Minimum Interference DCA scheme [15]. In this scheme, the new users will be
assigned to the idle channels with minimum local mean interference, in the order they arrive. It was shown

in [26] that when a new user is admitted to a power-controlled network, the optimal power level for the new




user can be written as:

he @
where 7, is the SIR threshold that the new user wants to achieve, Ynaz is the maximum achievable SIR for
the new user and Ing is the local mean interference plus noise level at the intended base station of the new
user before it is admitted to the network. It is now clear that the minimum interference DCA scheme does
indeed result in the minimum transmit power for the new user.

Whenever the local mean SIR for a user drops below a given threshold while the user is transmitting at its
maximum power level, a channel reassignment attempt is triggered and, if possible, the user is reassigned to
the idle channel, which currently has the minimum local mean interference. Note that this is a distributed
scheme, which, in general, is not globally optimal. Remember that any kind of global optimality in the channel
assignments can only be achieved through centralized algorithms, which are usually impractical due to the
excessive requirements for processing and also communications among the base stations.

- Another issue is call management and admission control. As we shall see, a network should be feasible for
every user to be able to achieve its desired SIR threshold. If no admission control is employed, a new user could
potentially force the network out if its feasibility region and hence result in dropping active calls. Therefore,
an admission control mechanism is needed to adjust the trade-off between blocking new calls and dropping
active calls. In [21] an admission algorithm was presented for a power controlled system, where the new users
would increase their powers only in small steps. It was shown how this scheme could protect the quality of
active links when new users arrive. Channel probing techniques were later proposed in [22]-[24], where a new
user would try to estimate the maximum SIR level that it can achieve by disturbing the network as little as
possible. The user will then be admitted only if its maximum achievable SIR is above its desired threshold.
Also a channel partitioning scheme was presented in [25] where a combination of dynamically allocated and
fixed assigned channels are incorporated to develop a rapid distributed access algorithm.

We adopt the simpler threshold-based implicit admission control scheme, presented in {18]. In this scheme,
a new user with a desired SIR threshold 44 will be admitted only if there exists an idle channel, on which
it can achieve an SIR threshold Y,ew, which is higher than 4 by a given protection margin. The value of
the protection margin for new users should be selected based on the trade-off between blocking new calis and
dropping active calls.

Moreover, a channel reassignment attempt will be triggered for a user if, while transmitting at the maximum

power, its local mean SIR drops below a threshold 7ynis, which is lower than v, by another given margin. This




margin is required to avoid excessive number of channel reassignments. The value of this margin should be
selected according to the trade-off between quality of service and the average number of channel reassignments
per call. Note that for channel reassignment, it is checked whether the user can achieve 4 on the idle channel
which currently has the minimum interference. Since vy < Ypew, this scheme clearly favors the active users,
that are being reassigned, to the new incoming users. If a channel reassignment fails, the user stays on its
old channel and the reassignment attempt is repeated every reassignment period (as long as r < 4, and
P = Pmaz) until the user is either successfully reassigned or dropped from the network. Finally, a user will be
dropped from the network if its local mean SIR drops and stays below a threshold Yurop(< Ymin) for a given

duration of time.

B. Power Control

While DCA schemes achieve higher levels of capacity by dynamically distributing the traffic across the

"channels, power control techniques focus on every channel and try to mitigate the co-channel interference by

dynamically adjusting the power levels of the co-channel users at their minimum required levels. Therefore
one can reasonably expect that integrating power control with DCA can achieve even higher levels of capacity,
even though the capacity gains may not be exactly additive due to some redundancy between thé two schemes
(18].

A widely studied approach for power control is the SIR threshold approach, presented in [4], where the
objective is for the SIR of each user in the network to be above a desired threshold, that is:

Ty = E% 2% | 3
A necessary and sufficeint condition for the existence of the optimal power levels P}, that satisfy the ah{)vé
set of inequalities, is called feasibility. In other words, a network of users is called feasible if every user can
achieve its desired SIR. It was shown in {4] that a network is feasible if and only if p(T'(Z — I)) < 1, where
Z = lzy] = {%‘}], I = diaglys,...,vr), U = [ug] = {%f—}, and I is the identity matrix, and p denotes

the spectral radius of a matrix. Furthermore, under the feasibility condition, the following simple iterative

algorithm, which could be implemented in a distributed manner, would converge to the optimal power levels:

i 0 i
An) = = .. -n-l—i— ; =—-I’ﬂ= iﬂ—l 3 4
pi(n) o ;:&3;@3( ) +m o i(n) =pi(n—1) o @

where I;(n) is the total interference plus noise power at the receiver of the intended base station for user

i. Therefore, every user only needs a measurement of its own channel gain and its total interference plus
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noise in order to update its power level. Note that J;(n) depends on the power levels of the users during the
(n — 1)-th power update period. Also no extra delays are assumed for processing and propagation. Various
generalizations of this algorithms have been presented in the literature. A unified framework along with
convergence analysis for some of these algorithms were presented in [5].

In most of these algorithms, it is assumed that all the channel gains stay constant for the duration of the
convergence of the algorithm. Therefore, it is implicitly assumed that the fading rate of the channel is much
slower than the power update rate. In other words, neither the channel gain variations due to user mobility
and fading, nor the measurement errors are taken into account. It was recently shown in [6] that the optimal
powers obtained from the SIR balancing approach, under constant gain assumptions, are very close to the the
optimal powers that minimize the Rayleigh fading induced outage probability for every link.

Some researchers have tried to analyze and possibly modify the power control algorithms to take into
account the channel gain variations and the fading induced measurement errors. In {7] it was shown how the
desired SIR for the users may be scaled up to guard against the user mobility effects. In [8] a simulation
study was performed to investigate the user mobility effects on slow integrator power control algorithm. In
[9] 2 modification of the distributed SIR balancing algorithm was proposed, which was less sensitive to SIR
measurement errors. Also in [10] stochastic measurements were incorporated in the power control algorithm
and it was shown that the power levels converge, in the mean square sense, to the optimal power levels. More
recently, it was shown in 11} how a simple Kalman Filter may be designed to smooth out the interference
measurements. Also in [12] it was méntiened how a minimum-variance power control algorithm may be
designed when the channel gain variations are modeled by filtered white noise sequences. Despite all this
effort towards analysis and design of power control algorithms in non-stationary environments, most of the
results fail to provide a systematic approach.

An alternative approach is to formulate the power control problem as a decentralized regulator problem,
where the objective is for the SIR of every user to track a desired threshold, while the channel gains and |
the inte:fereaée levels are changing with time and the SIR measurements sa.n be erroneous. Based on this
approach, concepts and design methodologies from control theory have already been used for the analysis of
some power control algorithms [27] and design of new algorithms [12][28).

We first note that, in the logarithmic scale, the distributed iterative algorithm in (4) is a simple unity gain

integrator algorithm in a closed-loop. Using a bar on the variables to indicate values in dB or dBm, we can




write:

~ _ - A R

Di(n) = pi(n — 1) + (% — 7u(n)) = pi(n — 1) + &(n), (5
where p;(n) is the power level in dBm for user ¢ for the duration of the n-th power update period and 7;(n)

is the SIR in dB for the same user at the beginning of the n-th power update period:
7i(n) = Pi(n — 1) + gis(n) — Li(n) ®

Moreover, I;(n) is the measured local mean interference plus noise power in dBm, available at the beginning

of the n-th power update period:

Ti(n) = 1010g,, (E 96(m) 105 -H},—{n}) , Q)

J#i
The block diagram for a single loop, associated with a single user, is shown in Figure 1. The controller transfer
function in this case is:

o
Kig™) = ;g_li = (®)

where ¢ is the shift operator. Therefore, the network can be seen as a set of interconnected local loops. It

should be realized that the couplings among the local loops is through the interference function (7), which,
in general, is nonlinear. The decentralized regulator formulation of the power control problem can now be
presented as the following: ”Design a set of local controllers K;(g™*) such that the SIR for every user, 7;,
tracks o desired threshold %; with a certain performance while the global network remains stable.”

The local loops in Figure 1 are quite general and can be modified to accommodate different modeling
assumptions. For example, extra delay blocks may be inserted in the feedback path to model processing and
propagation delays. Moreover, a saturation block may be inserted in the fer%:ard path after the controller to
model the maximum and minimum power constraints. Also we have implicitly assumed a linear time invariant
controller by writing K;(¢~*). However, in general, the controller itself can be a nonlinear block, as is the case
for Fized-Step power controi algorithms. Unfortunately, analysis of stability and convergence of the algorithms,
designed via this approach, can be very complicated. Both local and global stability for the network should
be analyzed while feasibility of the network and its implications should be addressed.

The global stability of the network implies that all the local loops are stable, but the reverse is not necessarily
true. It was shown in [26] that as long as the network stays feasible, i.e., the channel gain variations do not

force the network out of its feasibility region, a sufficient condition for global stability of the network is:

liGi(q-—l}I ltw —induced —<- 1’ {g}
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where Gi(¢™") is the transfer function from the interference I;(n) to power Pi{n — 1) and the £, — induced
norm for the single-input-single-output system can be obtained as:

[1G:(a™,_ —inducea = llgilly = > lgs(R)], (10)
k=0

where g; denotes the impulse response associated with the transfer function G;.

Hence if the local loops are stable, and if the feasibility condition is not violated and (9) is satisfied for
all local loops, then the network will be globally stable in the sense that the deviations of the power levels
from their corresponding optimal values will always remain bounded. It was also shown in {12] that if the
channel gains are constant and the network is feasible (i.e., a fixed optimal power vector P* exists) and if the

 interference function (7) is linearized‘ around P*, then all small deviations of the power levels in the network

from their corresponding optimal values will asymptotically converge to zero if:

nGi{q_l}”Sz—inéuced = St:’p IG* (gjw)! S 1 (11}
The above condition is indeed a sufficient condition for global stability of the linearized network in the € —

induced norm sense, while (9) gives a sufficient condition for global stability in the o, — induced norm sense

without any linearization or a.:;y constant gain assumption.

III. PrREDICTIVE POWER CONTROL

Our objective in this section is to show how simple models for the variations in the channel gains and the
interference levels may be used in designing simple Kalman filters, that provide predicted measurements for
both the channel gains and the interference levels while they mitigate the effects of the fast fading induced
measurement errors.

We are assuming that the received SIR measurement or the power command are sent back to the transmitter.
In other words, we are considering information-feedback closed-loop power control algorithms. Due to the
limitations on the control bandwidth and on the processing time, information-feedback algorithms usually run
at slower power update rates. Therefore, similar to DCA algorithms, they operate on the local mean values,

which are obtained through some sort of averaging of the measurements over some relatively long periods.

A. Models for Variations in Chennel Gains and Interference Zezzels

The variations in the channel gains can be characterized by the slowly changing shadow fading and the fast
multipath fading on top of the distance loss. We consider log-normal shadowing whose spatial (or temporal)

correlation is represented with a simple first-order Markov model presented in [30].
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The channel gain from every user ¢ to its intended base station, in the logarithmic scale, is therefore modeled

as:

gii(n)

8gii(n)

3% + 8gii(n) (12)

adgi(n — 1) + wy(n — 1), (13)

where g{; is a constant bias and wy, is a zero mean white Gaussian noise sequence. The constant bias accounts

for the antenna gains and the distance loss in the filter. The parameter a is obtained as:

a=e X, (14)

where v is the user velocity and T is the update period. Note that »7 is the distance that the user moves
during one update period. Moreover X, is called the shadowing correlation distance. It is the distance at
which the normalized correlation decreases to e~. To see this, note that the autocorrelation function for 63

can be obtained as:
2

Rag(m) £ B[5g(m +n)3g(n)] = ;2™ = oZal", (15)

where oy,, denotes the standard deviation of the noise sequence w,. Note that given the standard deviation
for shadowing o, and the value for a, the standard deviation for the driving white noise sequence can be
obtained.

In order to design distributed algorithms, we need to decouple the local loops in the network. For this
purpose, the interference plus noise should be modeled independently for every user. One approach is to treat
interference plus noise simply as a bounded disturbance for every user and deéign the power control algorithm

_based on the worst case considerations. However, we decide to model the interference plus noise, similar to

the channel gains, by white noise driven first-order Markov variations on top of a constant bias. That is:

L(n) = IP+6Ln) (16)

§Li(n) = abliin-1)+wi(n—1), an

where wr is a zero-mean white Gaussian noise sequence independent of Wy, but with the same variance. While
this model may not exactly capture the slow variations in the interference in a power-controlled system, it
can still be reasonable when such slow fluctuations in the interference levels are dominated by shadow fading.
. Note that, putting aside the changes in the transmit power levels, due to power control, the fluctuations in the

channel gains and interefernce levels basically result from the same physical phenomenon. We therefore use
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this model in 3 Kalman Filter to obtain the one-step predicted measurements of the local mean interference
values.

Note that one shall use receiver diversity techniques to combat fast fading, since power control algorithms,
in general, cannot track very fast channel variations. While we will evaluate the simulated performance of
our algerithm with higher power update rates, we decide to select the power update period such that the fast
multipath ﬂﬂctuatiaﬁs are averageff out while the slo@et shadowing fluctuations are being tracked. It was
shown in {31] that, under the flat Rayleigh fading assumption, when a first order low-pass filter or simply
a moving average filter is used to obtain the local mean values of the measurements, the averaging error in
dB will have a Gaussian distribution, whose mean can be made zero by appropriate choice of the filter DC
- gain and whose standard deviation depends on the shadow fading standard deviation o5, the ratio of the
shadowing correlation distance to the carriér wavelength X/, and the normalized measurement time f,,T,
where f, = v/ is the maximum Doppler frequency.

It is now clear that the model parameters not only depend on the environment through the values of the
shadowing standard deviation and the shadowing correlation distance, but also depend on the user velocity.
While one can think of implementing individual adaptive Kalman filters for each user, where tﬁe model
parameters are continuously updated based on the available information about the user velocities, we choose
to seﬁsider a fixed model to design and implement the same filters for all the users in the network. There are
two main reasons for this. One is that for a rather broad range of user velocities, the values for a and Ouw,,
and as shown in [31}, the averaging error variance only slightly chamée and we believe that the Kalman filters
will be robust to such changes. The other reason is that while some techniques have been already proposed
for user velocity estimation in mobilé environments (refer to [32] and the references therein), most of them

fail to provide accurate estimates in real time.

B. Kalman Filter Design

Using a set of available measurements, corrupted with Gaussian noise, a Kalman filter recursively obtains
the minimum mean squared error estimates of a set of variables that are varying according to a given dynamic
model. Kalman filters have proved to be strong estimation tools in a very wide range of applications [33]. As
examples of applications in communication systems, Kalman filters have been used for channel equalizatien

[34], interference estimation for call admission in CDMA networks [35] and for power control in packet-switched

broadband TDMA networks [9].
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‘We propose a predictive power control algorithm, where two Kalman filters are employed to provide the
one-step predicted estimates of both the channel gains and the interference levels for every user, which are
then used in an integrator algorithm to update the power levels. Using (12) and (13) for the channel gains,
we can write:

gis(n) = agii(n — 1) + (1 - a)g; + wy(n — 1). (18)

Similarly, using (16) and (17) for the interference levels, we can write:
Lin)=ali(n—1)+ (1 —a)? + wi(n - 1). (19

The idea is to design two simple Kalman filters that use the erroneous local mean measurements, available o
every user, to estimate the constant biases in the models and provide the one-step predicted estimates of the
channel gains and the interference levels. As mentioned,-the same models are used for all the mebileé in the
network. Hence we eliminate the indices ¢ and 44 for a simpler notation. ;

It is now appropriate to represent both models in the state-space form. Define z4 {n) = g(n}, zg2(n) & °,

z11(n) £ I(n), and z72(n) £ I°. The state-space models for every user can then be obtained as:

zy(n) = Agzg(n—1)+uw,(n—1), - (20)

yo(n) = Hjzg(n)+vy(n), (21)

zr(n) = Apzi(n—V+wiln-1), (22)

yi(n) = Hzp{n)+vi(n) (23)

where: _ :
* Lg £ ot : Wy £ ! s Wr al™ s (24)
_532 Wgeo Wro
. A a l—a A R )
As = s Hfz[}. 3]’ (25)
0 1

where wyo and wyo are two mutually independent fictitious zero mean white Gaussian noise sequences , which
are also independent from w, and w;. They are required to make the filters mbre robust to the uncertainties in
the models. Moreover, v, and vy are mutually independent zero mean white Gaussian noise sequences, which
are assumed to be independent from all other noise sequences in the model and are used to model the fast

fading induced averaging errors and other possible uncertainties in the local mean measurements. Remember

that all the variables are expressed in a logarithmic scale.
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Now starting from initial estimates £,(0)~ and £;(0)~, the measurement update equations for the filters are

expressed as:

Zo(n)t Zg(n)” + Ly(n) (y4(n) — Hyz, (n)™) (26)

E(n)*

£:(n)” + Li(n) (y1(n) — Hyg1(n)™) 27

where £¢(n)~ and £;(n)~ respectively denote the propagated (a priori) estimates of the channel gain and the
interference level at the end of the (n — 1)-th power update period. Hence, at time n (i.e., the beginning of the
n-th power update period), the current local mean measurements y,(n) and y;(n) are incorporated to obtain

the updated (a posteriori) estimates £,(n)* and 2;(n)*. The two-dimensional filter gain vectors L, and L,
are obtained as: ‘
- - —1
Ly(n) = Py(n)"Hf (H¢Py(n)"HT +V,) ™, (28)

L[(n)

Il

Py(n)~HF (H;Pr(n)"HY + Vi), (29)

where V, and V; are the measurement noise covariances and P,(n)~ and Pi{n)~ are the propagated estimation

error covariance matrices. Note that we only have scalar measurements and no matrix inversion is involved.

At time n, the covariance matrices are updated as:

Pyn)* = Py(n)~ — Ly(n)H;P,(n)" | (30)

PI{R}+

Pi(n)™ = Li(n)Hy Pr(n)~. ‘ (31)

Now the one-step predicted estimates for the channel gain and the interference level are obtained by propa-

gating the estimates to the next power update period:

E(n+1)" = Asgy(n)* (32)
E{n+1)" = Azzi(a)t, (33)
and the covariance matrices are propagated as:
Pyln+1)" = A;P(n)* AT +W,, (39)
Pi(n+1)" = A;Pi(n)tAT + Wy, (35)

where W, and W} are two-dimensional diagonal covariance matrices for the driving noise sequences in (20)

and (22), respectively.
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Incorporating the one-step predicted estimates in the integrator algorithm (5), the updated power level for

the duration of the n-th power update period can be obtained as:
pn)=pn -1+ HF-7F(n+1)7), : (36)
where:

Fln+1)" pn—1)+z2u(n+1)" —2nn+1)~

1l

pn—1)+§n+1)" —I(n+1). (37

When a call is assigned (or reassigned) to an idle channel, its Kalman filter estimates are initialized (or reset)
as £41(0)~ = £42(0)~ = 3(0) and £;1(0)~ = £12(0)~ = I(0), where §(0) and I(0) are the local mean channel
gain and interference values available at the time of channel assignment. Also the error covariance matrices
are initialized as Py(0)~ = P;(0)~ = diag(cZ,02) where o, is the shadow fading standard deviation (set to 8
dB in our simulations).

We pick the model parameter a according to (14) and by considering the maximum user velocities that we
expect in our mobile environment. This makes the filter assume the least cérrelatian among the local mean
values in ;‘.WO consecutive power update periods and therefore rely more on the measurements. As we shall
explain in our simulation details, we assume the power levels to be updated every 100 msec. Also we consider
the shadowing correlation distance to be about 40m and the maximum user velocity to be 80 km/hr. Using
(14), we then pick o = 0.95. Using this value for g and o, = 8 dB and {15), we gét s, = 0%, =156. We
choose to set of, = 0%, = 2.0 in the filter, again to deal with uncertainties in the models. The variances for
the fictitious driving noise sequences wg and wyp are also set to 2.0 dB2. Also the standard dgv%ations for
the local mean measurement errors are both set to 3.0 dB, i.e., Ve =V =9.0.

One should observe that the error covariance matrices and the filter gains are independent of the actual
measurements. This can be seen from the filter equations (28)-(35). Therefore, the filter gains L, and Ly can,
in fact, be calculated and saved a priori. This can result in a significant reduction in the filter processing time.

Also note that when the filter reaches the steady-state on a specific channel, the steady-state filter gain
vectors are equal to:

L,=L; = PHT (H;PHT + V)", (38)

where V, = V; =V and P is the positive-definite solution to the following discrete Riccati equation:

P=A;PA] — AyPH](H;PHT + V) 'H;PAT + W, (39)
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where W, = Wy = W. Using our selected values, we get:

T
Ly=Li=L= { 0.37990 0.37121 ] . (40)
C. Global Stability of the Network

When the Kalman filters are employed, the block diagram for a single loop can be depicted as in Figure 2.
‘We now show that, in the vs,teady-state, the Kalman filters and therefore the local loops are stable?. Moreover,
the sufficient conditions for global stability are satisfied.

Given the filter gains in (40), it is straightforward to obtain the steady-state transfer functions for the

Kalman filters:

§n+1)-  In+1)- _ q(0.37947¢ - 0.36001)
gn) —  I(n) ~ ¢*—1.57053¢+0.58909

(41)

The poles of the Kalman filters (i.., the poles of the above transfer function or equivalently the eigenvalues

of Ay — A;LH;) are located inside the unit circle at:
sy1 = 061928, 54 =0.95125. (42)

It is now clear that all the local loops are stable, i.e., the poles for all the closed-loop transfer functions, associ-
ated with a single loop, are inside the unit circle. Processing and propagation delays (i.e., extra delay blocks in
the feedback path) could result in instability of the local loops and therefore instability of the whole network.
However, even though some delay compensétion schemes have been proposed in [12], information-feedback
power control algorithms, as mentioned before, usually run on lower power update rates and processing and
propagation delays are usually much lower than a power update period.

As we mentioned, stability of the local loops is necessary but not sufficient for global stability of the network.
However, the network will indeed be globally stable in the £, — induced norm sense, if the transfer function
from the interference I(n) to the power p(n — 1), satisﬁeé the norm condition (9).

Using {41} and from Figure 2, it is straightforward to obtain:

_pn—1)  0.37947¢ — 0.36091
G0 =Ty = F-1570537+ 058009’ (“3)
and hence we get:
HG(qnglz—induced = iEG{Q}”tu——inéuce& =1.0. (44)

2Under the technical conditions of stabilizability and detectability, the steady-state Kalman filters are always known to be
stable [33]
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Therefore G{g) satisfies both {9) and (11). From (8}, we conclude that, as long as the network is in its feasible
region, the deviations of the power levels of all the users in the network from their corresponding optimal values
will always remain bounded. Moreover, from (11), we conclude that if the power levels only slightly deviate
from their optimal values, while the channel gains remain constant, they will asymptotically converge back to
their optimal values. This proves the global stability of the network, on every channel, both in £, sense and
in £, sense (ﬁth a linearized interference function), when the Kalman filters are at their steady-state.

When multiple channels are considered and the power control algorithm ';s integrated with a DCA scheme,
the global stai;ility analysis for the network becomes extremely complicated. Average number of channel
reassignments per call can be considered as a measure, which can somehow show the level of stability for the
netéerk. We show through computer simulations that the average number of channel reassignments per call

will be significantly reduced when the Kalman filters are employed in the power control algorithm.

IV. SmMuLATION MODEL

While the previous theoretical analysis helps in justifying the use of Kalman filters in power control algo-
rithms to deal better with the variations in the channel gains and the interference levels and also the errors
in the local mean measurements, a simulation study is esse;:tial to analyze the overall performance when such
a predictive power control algorithm is integrated with a DCA scheme in a relatively realistic mobile environ-
ment. We therefore set up a system-level simulation environment, similar to the ones presented in [17]-{18]
but on a smaller scale, in order to analyze the overall performance of the network, when our predictive power
control algorithm is integrated with a distributed minimum interference DCA scheme. User arrivals and de-
partures and user mobility are all considered. In this section, we ekplain the details of our simulation platform
and in the next section, we analyze the results.

The simulations run on the frame level, and hence only power and interference levels are simulated and no
modulation and coding a.re'censidered in the simulations. While we do not restrict ourselves to any specific
standard‘, we have tried to stay close to the Global System for Mobile Communications (GSM) standard.

A 3x3 square grid of cells is assumed. The base stations are located on the cell centers and are separated by
800m. To avbid edge effects, a ring simulation structure is assumed, i.e., the statistics are only gathered from
the central cell. This is somewhat simpler than a toroidal simulation structure and is shown to provide more
optimistic but comparable results [36]. The other reason for our results to be somewhat optimistic is that only

nine cells are simulated, and therefore lower interference levels are generated. However, our simulation results
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clearly serve our purpose of comparing our predictive DCPA scheme with the one that uses no prediction.
Omni-directional antennas with two branch selection diversity is assumed for the base stations.

Every channel is characterized by a pair (m,n) where m denotes the carrier frequency and n is the index for
the time slot. We consider two carrier frequencies and eight slots per carrier. As mentioned before, no blind
slots are considered. Hence, there are 16 available channels, all of which can potentially be used as traffic
channels.

Every frame is 4.0 msec, consisting of 8 slots, each with a duration of 0.5 msec. It is assumed that the
signal and interference power measurements for every user are available in every frame at the end of the user’s
corresponding slot. Various events might then happen every multiple number of frames.

The channel gain for every link is normalized with respect to the base station and mobile antenna gains and
is characterized by three components: distance Iéss, slow or shadow fading and fast fading. The distance loss
is assumed to be inversely proportional to d®, where o is set to 4.0. For shadowing a log-normal pattern is
generated a priori. Therefore the shadowing values only depend on the user’s location. The resolution of the
shadowing grid is set to be equal to the shadowing correlation distance X s, which is assumed to be 40m. The
shadowing for every user is then obtained by a normalized bilinear interpolation of the four closest points on
the shadowing grid. A slowly varying flat Rayleigh fading is also assumed. This implies that no line-of-sight
exists and the delay spread is small compared to the symbol duration or the inverse channel bandwidth and
thus only a single path with a Rayleigh distributed amplitude (and hence exponentially distributed power) can
be distinguished. In fact, the Rayleigh fading component is assumed to be constant for the whole duration of
a single slot (0.5 msec). Time correlation for Rayleigh fading is often represented using the Jake’s model [29],
where it is expressed in terms of a zero order Bessel function of the first kind, which results in a non-rational
spectrum. We use a first-order approximation by passing a white complex Gaussian noise through a first order
filter and obtaining the squared magnitude of the output Gaussian process. The time constant of the filter, for
every user, is obtained by setting its 3 dB cut-off frequency equal to f,,/4 where f,, = v /A is the maximum
Doppler frequency for the user [13]. |

New calls are generated based on a Poisson process with a given arrival rate ),. Each call is assigned an
exponentially distributed holding time with a given average value T},. The average Erlang load per cell is then
obtained as E; = A, T3 /N,, where N, = 9 is the total number of cells. The Erlang load per cell effectively
determines the average number of users that could be active in every cell at any instant of time. We have

considered various combinations of values for A, and T}, to simulate the network under different traffic load
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conditions.

The new users are uniformly distributed in the area. The mobility of the user 4 is modeled with a constant
but random speed v; and the angle §; between the velocity vector and the horizontal axis (~7 < 8; < 7). The
speed for every new user is selected randomly from a triangular distribution in the range 0-80 km/h. This is
preferred over a uniform distribution, as it results in a smaller variance for the velocity distribution among
different users. The initial direction # is uniformly picked. Then every 10 sec, a new direction is selected from
a triangular distribution with the old direction as its mean. This is again preferred over a uniform distribution
or a two dimensional random walk, since it makes small angle turns more probable that large ones. The
motion trajectory for a sample user is shown in Figure 3. |

The desired SIR threshold for all users in the network is set to 7; = 12 dB, while the minimum tolerable
SIR. is considered to be Jmin = 10 dB. Both margins for new user admissions and user droppings are set to
2 dB. ’Therefore new users will be admitted only if they can achieve ., = 14 dB on the idle channel with
the minimum local mean interference. Moreover, a user will be dropped from the network if its SIR drops
below 4r0p = 8 dB and stays below for 4.0 consecutive seconds. Note that these margins should have been
expressed as percentages of 7, and .—},m;.n for every user, if the users were to have different quality of service
requirements and thus different SIR thresholds.

When a new user arrives into the network, it first starts scanning the downlink control channel from all
neighboring base stations and measures all the local mean channel gains. It is assumed that this process take
about 0.8 sec {200 frames), which is called the initial call set-up time. The new user then sends its request
for a channel to the base station which has the strongest signal. If this base station does not have any idle
channels, the user will try the second best base station. This procedure is called Direct Retry and will be
repeated for a given number of base stations (set to 3 in our simulations) before the user is blocked. When
there are idle channels available, the base station checks whether the user can achieve 9y, on the idle channel
with the minimum local mean interference. If so, the user will be admitted and will be assigned to the idle
channel with the minimum interference. Otherwise, the user will be blécked.

We should note that no macro diversity is considered, i.e., any user will only communicate with a single
base station at any instant of time. Moreover, base station assignment is considered to be separate from power
control, i.e, the power levels are obta,ined’ assuming that the users are already assigned to their corresponding

base stations. Joint base station assignment and power control has already been proposed in the literature

[37).
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A minimum interference DCA scheme is employed. The local mean channel gain and interference values
for possible channel reassignments are obtained by simple averaging of the available measurements over 50
consecutive frames for every user.

Finally, a base station hand-off attempt will be triggered if the local mean channel gain from a neighboring
basevstation exceedskthe corresponding value from the current base station by a selected hand-off margin of
4 dB. If the hand-off attempt fails, the user will stay with its current base station. Note that the users are
assumed to be continuously monitoring the downlink control channels of all neighboring base stations.

Two power control algorithms are simulated. Namely, the simple integrator algorithm in (5) and (6) and
the predictive algorithm in (36) and (37) are compared. Note that while the propagation simulation models
are tailored to individual users, according to their different trajectories and speeds, the same Kalman filter
models and parameters are employed for all the users in the network.

After a new user ¢ is admitted, it sets its initial power at:

(o = Yadi(0)~
p:(0) = O (45)

where I;(0)~ and g::(0), respectively, denote the local mean channel gain and the interference plus noise
level, which are available at the time of user admission. Note that this is séemehow an optimistic choice, since
a new user sets its initial power as though other users will not increase their transmit powers.

For most of the simulations, the power update rate is assumed to be the same for all users and is set to
100 msec, that is, every user updates its power level every 25 frasﬁes. The idea is to have fast multipath
fluctuations averaged out while slower variations are being tracked. In all simulations, a maximum transmit
power constraint at 30 dBm is imposed on all users in the netu%ork, while the receiver noise floor is set to -120
dBm.

It should be mentioned that since the users arrive at arbitrary instants of time according to a Poisson arrival
process, the power updates are in fact performed asynchronously, even though all the users have the same
power update rates. While most results in power control assume synchronous power updates among the users,
asynchronous power control algorithms have been addressed in the literature [5]. To have synchronous power

updates, one could simply force the users to arrive at instants of time, which are multiples of a common power

update period.
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V. PERFORMANCE ANALYSIS

In this section we present and analyze our simulation results and shgw how the predictive DCPA scheme
can improve the overall performance of the network.

For any given traffic load, we run the simulations multiple times with different random generator seeds
and every run continues until enough number of calls are dropped. The statistics are then gathered from the
central cell. ‘

Figures 4 and 5 show the call blocking and the call dropping responses of the network under the two DCPA
schemes. It can be seen that at 7.0 Erlang/Cell, the predictive DCPA scheme achieves about 0.5% lower
blocking rate and about 0.03% lower dropping rate. Moreover the improvement in performance increases as
the traffic load increases. Remember that there is always a trade-off between blocking new calls and dropping
active calls.

Our predictive DCPA scheme also results in better target SIR tracking. We obtain an estimate for the SIR
error standard deviation and also estimates for the SIR cumulative distribution functions by looking at the
local mean SIR values of all the users in the network at various random instants of time (after enough call
attempts have been made and the network has reached some kind of steady state) during every run of the
simulation. Figure 6 shows the standard deviation for the error in the local mean SIR for a range of traffic
loads. It can be seen that the predictive scheme decreases the SIR error standard deviation by about 0.3
dB at 7.0 Erlang/Cell, while the improvement is about 0.7 dB at 10.0 Erlang/Cell. Furthermore, Figure 7
shows the cumulative distribution for the local mean SIR values in the network under 8.0 Erlang/Cell and
10.0 Erlang/Cell. These figures show how the local mean SIR values for different users are spread around
the target SIR value ¥4 = 12 dB. It can be seen that the predictive DCPA scheme results in the locai mean
SIR values, which are less spread around the target SIR. The improvement is again more noticeable in higher
traffic load. In fact, Figure 8 shows how the local mean SIR cumulative distribution function changes with
the traffic load under both schemes.

One measure that somehow shows the level of stability of the network is the average number of channel
reassignments per call. Figure 9 shows this number for a range of traffic loads under both DCPA schemes.
As one would expect, fewer channel reassignments per call are, on average, required in the predictive DCPA
scheme. One reason for this is that, as shown before, the predictive scheme does indeed result in better target
SIR tracking and smoother local mean SIR behavior.

‘We also compare the transmit power distribution of the users in the network under the two DCPA schemes.
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Figure 10 shows an estimate of the cumulative distribution function for the transmit powers of the users in the
network at the load of 8.0 Erlang/Cell. It can be seen that the two schemes perform quite similarly, as far as
transmit powers are concerned. In fact, both algorithms result in considerable power saving, when compared
with a network where all the power levels are fixed at their maximum levels. For example, at a relatively high
load of 8.0 Erlang/Cell, about 50% of the users under both DCPA schemes are transmitting at 0 dBm or lower
power levels. It should however be mentioned that our predictive DCPA algorithm seems to result in slightly
higher power levels in the network. While one may see this as a small cost for better SIR tracking and better
call blocking and dropping responses, it should also be noted that our predictive DCPA scheme does indeed
reénlt in higher capacity which in turn implies more active users at any instant in time. This higher traffic
explains the higher average transmit power for the users. In fact, Figure 11 shows how the power cumulative
distribution functions might change as the traffic load on the network changes under the two DCPA schemes.

Finally, one might argue that our power update rate is too low for the éve:age speeds considered in our
simulations. In order to further evaluate the performance of our predictive algorithm, as comapred to standard
fast power control schemes, we also simulated the DCPA scheme with standard fixed-step power control
algorithm where, depending on the daviation of the received SIR from its target value, the power of each user
is incremented or decremented by a fixed 1 dB step every single frame (i.e., once per 4 msec). We then ran the
same simulations with our integrated predictive DCPA scheme where the power of each user is updated every
5th frame (i.e., once every 20 msec). Tables 1 and 2 show the call dropping and call blocking probabilities
for the two scenarios under two sample traffic loads. It can be seen that the results are similar with our
predictive algorithm still performing slightly better. Note however that while some additional computational
cost is associated with our algorithm, the update rate for our algorithm is taken to be five times slower than
the standard fixed-step algorithm. We do however believe that claziﬁcation of the exact trade-off between the

extra computation and the lower update rate would require further analysis using simulations and, possibly

profiling the code on specific processors.

VI. ConcLusiON

A predictive Dynamic Channel and Power Allocation scheme was presented in this paper. Simple Kalman
filters were designed to obtain the predicted estimates of the local mean channel gains and the local mean
interference plus noise levels. These predicted estimates were then incorporated in an integrator algorithm to

update the power levels of all the users in the network. It was shown how generic models may be used and
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filter parameters may be selected to design the same robust filter for all users. Local stability of the network
was analyzed. Moreover it was shown that the sufficient conditions for global stability of the network were
satisfied when the Kalman filters were employed in the power control algorithm. The global stability results
imply that, as long as the network stays feasible, the deviations of the power levels from their corresponding
optimal values will always remain bounded, while the small deviations will always converge back to zero.

This predictive power control algorithm was integrated with a Minimum Interference Dynamic Channel
Assignment séheme in an FDMA/TDMA mobile radio system. A system-level simulation environment was
then developed. User arrival and departures and user mobility along with flat Rayleigh fading effects were all
included in the simulations. It was shown that the predictive DCPA scheme results in better call dropping
and call blocking responses and also better target SIR tracking performance for the network. Moreover, on
average, fewer channel reassignments per call are required under the predictive DCPA scheme. We believe
that these improvements are obtained mainly because the predictive algorithm takes into account at least the
slow variations of the channel gains. Also by dealing with uncertainties in the measurements, it effectively
mitigates the fading induced local mean measurement errors. It was shown however that the predictive DCPA
scheme results in slightly higher power levels for the users in the network.

As for future research, one may try to design adaptive algorithms where the parameters of the algorithm
and even the power update rates are adaptively adjusted for individual users, according to such information
as user velocities, etc. Also the standard integrator algorithm may not be the best power control algorithm.
Even though constraints on complexity and computational effort are always present, other simple algorithms
may still be designed th;xt could result in batfer SIR tracking, better allocation of resources and finally higher
levels of capacity in highly non-uniform and non-stationary environments. Finally, analyzing the behavior of
any prediction filter, both in terms of convergence and performance, under bﬁrsty interference conditions can

constitute another interesting line of future research.
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Fixed-Step DCPA, 250 Hz

Predictive DCPA, 50 Hz

8.0 Erlang/Cell 0.17% 0.16 %
9.0 Erlang/Cell 0.73 % 0.66 %
Table 1

CALL DROPPING PERCENTAGE

Fixed-Step DCPA, 250 Hz

Predictive DCPA, 50 Hz

8.0 Erlang/Cell 1.12% 0.86%
9.0 Erlang/Cell 3.27% 3.15%
Table 2
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Abstract

Power control is considered as an efficient scheme to
mitigate co-channel and multiple-access interference
in cellular radio systems. Various approaches have
been proposed in recent years to design power control
algorithms. We focus on the feedback algorithms that
are based on Signal to Interference plus Noise Ratios
(SIR-based algorithms). We review SIR threshold ap-
proach and then discuss how power control design can
be formulated as a decentralized regulation problem.
We use a robust control framework to analyze global
stability of a network on a single channel. We obtain
a sufficient condition, which guarantees that the de-
viations of the power levels from their optimal values
remain bounded, even when the channel gains change,
as long as the network stays feasible.

1 Introduction

Optimal allocation of transmit power levels in wireless
networks has attracted a lot of attention in recent
years. The main idea is to control the transmit power
level of a user or a base station in a wireless system
in order to maintain an acceptable level of quality of
service, while eliminating unnecessary interference to
other users in the network. Different objectives and
approaches have been perceived for power control and
different algorithms have been naturally obtained.

The major objective in Direct Sequence Code Divi-
sion Multiple Access systems is to mitigate the mul-
tiple access interference and therefore the near-far ef-
fect, whereas in Time/Frequency Division Multiple
Access systems the objective is mostly to control the
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co-channel interference. Power control will also mini-
mize the power consumption for the users and hence
prolong their battery life.

We focus on power control algorithms that are based
on Signal to Interference plus Noise Ratio (SIR). Note
that, in general, higher SIR would yield better bit
error performance and it is therefore common to ab-
stract the system architecture and consider SIR as the
measure for quality of service in order to formulate the
power control objective.

One approach for SIR-based power control design is
SIR threshold approach, presented in [1], where the
objective is for the SIR of each user in the network
to be above a desired threshold. It is shown how the
optimal powers could be obtained through a simple
distributed algorithm. The necessary and sufficient
condition for the existence of the optimal powers is
expressed as a feasibility condition. Various general-
izations of this algorithm were later discussed in the
literature. A uniform framework along with conver-
gence analysis (under the condition of feasibility) for
many of these algorithms were presented in [2].

In this paper, we focus on the decetralized regulator
formulation for power control design. It has been no-
ticed that the distributed algorithm presented in [1]
is simply an integrator algorithm, in a closed loop,
on the logarithmic scale. This has initiated a the de-
centralized regulator approach for power control de-
sign where concepts and design methodologies from
control theory have been used for the analysis of cur-
rent algorithms [3] and design of new algorithms [4][5].
This approach could be especifically helpful if mod-
els for fading, i.e., channel gain variations, are to be
incorporated in the design. However, stability and




convergence of these algorithms can not be verified
through simple techniques such as the one presented
in [2]. Therefore more complicated stability analysis
should be performed to ensure global stability of the
network under these power control algorithms. A ro-
bust control framework was presented in [4], where a
sufficient condition for global stability was established
using a linearized interference function. We use a sim-
ilar framework to obtain another sufficient condition
for global stability without any interference lineariza-
tion. This condition will guarantee that, under 3 de-
signed power control algorithm, the deviations of the
power levels in the network from their corresponding
optimal values will always remain bounded even when
the channel gains change, as long as the variations in
the channel gains do not force the network out of its
feasibility region.

The organization of the paper is as follows. In the
next section, we present the system model and review
the SIR threshold approach. In Section 3, we review
the decentralized regulator formulation for power con-
trol design, and in Section 4, we obtain a sufficient
condition for global stability. Concluding remarks are
provided in the final section.

2 System Model and SIR Threshold
Approach

Consider a cellular system where M users are sharing
a single channel. This channel could be a frequency
band (FDMA), a time slot (TDMA) or even a spread-
ing code (CDMA). Therefore, for every desired user-
base station link, there are M — 1 interfering links.
The received SIR on the uplink channel for user ¢ can
now be written as: .
GiiPi
= e 1
> i1 9isPi + i
where p; is the transmit power for user i, g;; is the
channel gain (or attenuation) from user ¢ to its de-
sired base station (in the linear scale), g;; is the chan-
nel gain from user j to the desired base station of
user i and 7; is the receiver noise intensity at the de-
sired base station of user . Note that even though we
choose to focus on the uplink channel, a similar model
and similar results can be obtained for the downlink
channel. Define the normalized channel gain matrix
Z as: B
' Z=layl, w=2 2)
Gii
Note that Z is a non-negative stochastic matrix and,
in general, is not symmetric.

In the SIR threshold approach, the objective is for the
SIR of every user ¢ to be above a desired threshold

v, that is: r; > «;. It is easy to show that these
constraints can be written in the matrix form as:

P>T(Z-I)P+U ®3)

where I' = diag(y1,...,7m) and U = [u;] = [%} and
I is the identity matrix. The necessary and sufficient
condition for the existence of a positive power vector
P, which satisfies the above constraint, is called fea-
sibility. In other words, a network of users is called
feasible if every user can achieve its desired SIR. The
corresponding power vector is then called a feasible
power vector. It is clear that feasibility of a network
depends on all channel gains and all desired SIRs. In
SIR threshold approach, the feasibility condition is
quantified and the minimum feasible power vector is
obtained.

Theorem 2.1 (SIR Threshold) Assuming U > 0,
a network of users is feasible if and only if p(F) < 1,
where:

F%I‘(Z—-I)::’fgg':{), fij=%: i#j] (4)

£33
and p denotes the spectral radius of ¢ matriz. Under
the feasibility condition, the optimal power vector is
obtained as:

Pr=(I-FU (5)

Matrix F is a non-negative (component-wise) irre-
ducible matrix and the above theorem can be proved
using some results from the theory of non-negative
matrices [6]. The power vector P* is optimal in the
sense that for any other feasible power vector P, we
have P > P*.

The above solution for P* is a centralized solution in
the sense that a central processor needs to gather all
the information about all the channel gaing and target
SIRs, calculate the optimal power vector and send
back the corresponding power command to every user.
It was shown in [1] that a simple iterative algorithm,
which could be implemented in a distributed manner,
would converge to P*. In fact, it is clear that under
the condition of feasibility, the optimal power vector
P* is the unique fixed point of the following iterative
algorithm:

Pn)=FP(n-1)+U (6)

and component-wise, we can write:

pi(n) = & E giipi(n— 1)+
g \ 4
Yi Yi
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Figure 1: A local power control loop, associated with a
single user

where I;(n) is the total interference plus noise power
at the receiver of the assigned base station for user
i. Therefore, at the beginning of the n-th power up-
date period, the local mean channel gain g;; and the
‘local mean total interference plus noise power I;(n)
are measured at the receiver and the new power level

pi(n) is calculated and sent back to the user. Note

that no extra delays are assumed for processing and
propagation. Moreover, the convergence is proved as-
suming that all the channel gains and the desired SIRs
stay constant for the duration of convergence of the
algorithm. This may not always be a reasonable as-
sumption, especially if fast fading is considered while
low power update rates are assumed. In the next sec-
tion, we discuss how power control can be posed as a
decentralized regulator problem.

3 Decentralized Regulator Approach

Using a bar on the variables to indicate the values in
dB, we can write the distributed algorithm in (2) in
logarithmic scale as:

Bi(n) = pi(n—1)+ (% ~7i(n)) 2 pi(n—1)+&(n) (8)

where §;(n) is the power level in dBm for user i for the

duration of the n-th power update period and 7;(n)
is the SIR in dB for the same user at the beginning
of the n-th power update period:

Fi(n) = pi(n — 1) + gu(n) — Li(n) 9)

Moreover, I;(n) is the local mean interference plus
noise power in dBm available at the beginning of the
n-th power update period:

- Fj{n-1)
Ii(n) = 10log;o | > 910~ 49 (10)
J#i

It is now easy to see that this algorithm is, in fact, a
simple unity gain integrator algorithm in a closed lo-
cal loop, as shown in Figure 1. The controller transfer

function in this case is:

-1y _ Pi(g™Y) _ 1

Ki(g™) FigD) 1o (11)
where g is the shift operator. Therefore, the network
can be seen as a set of interconnected local loops,
each of which is associated with a single user. It
should be realized that the couplings among the lo-
cal loops is through the interference function (10),
which, in general, is nonlinear. The decentralized reg-
ulator formulation of the power control problem can
now be presented as: Design a set of local controllers
K;(q™!) such that the SIR for every user, 7;, tracks a
desired threshold 7; with a certain performance while
the global network remains stable.

This approach has already initiated research on using
control theory concepts for power control design [3]-
[5]. Note that the local loops in Figure 1 are quite
general and can be modified to accommodate differ-
ent modeling assumptions. For example, extra delay
blocks may be inserted in the feedback path to model
processing and propagation delays. In fact, one step
delay is typically assumed when high power update
rates are considered [7]. It should also be mentioned
that we have implicitly assumed a linear time invari-
ant controller by writing K;(g™*). However, in gen-
eral, the controller itself can be a nonlinear block, as
is the case for Fized-Step power control algorithms.

4 Global Stability

Unfortunately, stability and convergence of the power
control algorithms, designed as decetralized regula-
tion algorithms, can not be verified through simple
techniques such as the one presented in [2]. A robust
control framework was proposed in [4] to obtain a suf-
ficient condition for global stability using a linearized
interference function. We will use a similar approach,
but with a different notion for stability, and we obtain

~a more general sufficient condition for global stability

without any interference linearization.

We consider a system to be stable if bounded inputs
generate bounded outputs. In robust control termi-
nology [8][9], we use £ norm to quantify the size of
the signals in the system and £.-induced norms to
quantify the amplification of the signals, i.e., the size
of operators or transfer functions. We will obtain a
sufficient global stability condition using a fundamen-
tal stability result called the Small Gain Theorem:

Theorem 4.1 (Small Gain Theorem) Consider the
feedback loop in Figure 2. Let Gy : €2 — {7 and
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Figure 3: The Power-Controlled Global Network (on a
single channel)

Ga : L3 — £ be two stable operators and assume
that the closed loop system is well-posed (i.e., for
any u1,Uz € Ly, there exists a unique solution for
y1,Y2 € Lo ). Then the closed-loop system is stable if
;*Glnqﬁm—in&uceé”Gﬂifm —induced < 1.

Note that the above theorem only states a sufficient
condition, which may be conservative in some cases.

As we mentioned, a network of users can be seen
as a nonlinearly coupled set of local loops. In fact
the global network can be depicted as in Figure 3,
where G(¢™!) = diag (Gi(q™"),...,Gm(q™Y)) is a
block diagonal closed-loop transfer function matrix
from interference I(n) to power P(n—1) and I(.) is a
nonlinear operator, which produces interference plus
noise power in dBm from the power levels. Note that
Gi(g™) is also equal to the closed-loop transfer func-
tion from %; to ;. We have:

P(n-1) =G )I(n) -g(n) +7())  (12)

where:

7 2 [Gu-.-gum” (13)
¥ 2 el (19)
In) & [L(P(r-1)...Tu(B(n—1))] (15)

Now lets assume that the network always stays feasi-
ble. Note that we are not assuming channel gains to

Ap;

AB(n—1)

AI(n)

G(q™) G(q'-i)—:éj("‘_l)

Figure 4: The Power-Controlled Global Network in a
Variational Form

be constant. But we only assume that the time varia-
tions of the channel gains do not push the network out,
of its feasibility region. Therefore, at any instant of
time, there exists an instantaneous bounded optimal
power vector P*, which is related to the correspond-
ing optimal interference as:

P*(n~1) = I"(n) - g(n) +7(n) (16)

Since we are not considering user arrival or depar-
tures, P* will be constant as long as the desired SIR
thresholds and the channel gains remain constant. We
now consider the deviations of the power and inter-
ference levels in the network, at every instant of time,
relative to their optimal values, that is:

AP

AT

P p* (17)
I-r , (18)
Using (12) and (16), we can now write:
P(n—1)-G(¢"")P*(n—1) = G(g"")AI(n) (19)
Hence:
AP(n—1)=Pn-1)—-P*(n-1)
= An-1)-G(g™)P*(n—1)+(G(¢™")~Is) P*(n-1)
=G H)AI(n) + (G(g™") ~ Ia) P*(n - 1) (20)
where Iy is the identity matrix. The network can
then be shown as in Figure 4, where Apy is the non-
linear operator transforming AP to AI. We can show

that Apy is a contractive operator in the sense that

l|Apr||t—inducea < 1. To do so, we use the Mean
Value Theorem [10].

> e

Lemma 4.2

iiéPz‘nlm-—inéuced <1 (21)

Proof: Using (10), it is straightforward to show:
oL, { 0 i=j

_—= giip; . . 22
3?.’5 E :&?&. 9ikPr+1i t ?é J ( )




Remember again that the variables without bar in-
dicate values in linear scale. From the Mean Value
Theorem, we know that for every i and for every op-
timal power vector P*, there exists a power vector

P lying on the line segment between P and P* such
that:

AL =22 AP (23)

Now using (22) and (23) and assuming ||AP||, < 1,
which then implies |Ap;(k)] < 1foralli=1,...,.M
and £ =0,1,..., we can write:

o 9i5(K)p; (k — 1)

PP s e
gij(k)p;(k — 1)

- P El;ei ga(k)pi(k — 1) +m
9 (k)b (k — 1)

- 7 El;&i gi(k)pi(k — 1) +m

Aﬁf{k - 1) (24)

|Ap;(k—~1)]  (25)

<1 (26)

Therefore: ||All| = sup, max; |AL(k)| < 1, and
hence: [|Apr||ee, —induced = SUP||AP||co <1 ATljeo < 1.
Note that ||Aprlle., —induced = 1 if no receiver noise is
considered for any of the receivers.

It is clear that stability of every local loop is a neces-
sary (but not sufficient) condition for global stability.
We are now ready to state a sufficient condition for
global stability of the network.

Theorem 4.3 (Global Stability) Consider the
network in Figure 4. Assume that the network is al-
ways feasible, i.e., there always exists a bounded power
vector P* satisfying (16). Then the network is glob-
ally stable if for every user i:

HG’:{G-—E)I lim —induced S 1 (2?)

Proof: Since G;(¢!) always incorporates a delay,
it is easy to see that the operator Ap;G is always
strictly causal and hence the closed loop system in
Figure 4 is always well-posed. Moreover, the feasibil-
ity assumption guarantees the existence of a bounded
P*. Therefore, if ||Gi(¢71)]] < 1 for ev-

foo—induced —

ery user i, we will have ||G(g71)||¢. —induced < 1 and
using Lemma, 4.2, the global stability of the network
will be established simply by invoking the Small Gain
Theorem.

The above theorem states that if the feasibility con-
dition is not violated and if (27) is satisfied, then the

deviations of the power levels of all the users in the
network from their corresponding optimal values will
always remain bounded. Even though the condition
(27) is only sufficient and might be conservative in
some cases, it can still help us design new stable algo-
rithms and analyze the stability of current algorithms
under channel gain variations. We will show this by
an example.

But first, we want to compare our result with the one
presented in [4]. It was shown in [4] that if the channel
gains stay constant and if the network is feasible (ie.,
a constant optimal power vector exists) and if the
interference function is linearized around this optimal
power vector, then a sufficient condition for global
stability of the linearized network (in the £, — induced
norm sense) is:

”Gé(q_l;‘”ez—induced = sup |G (7)) <1 ()

This means that if the power vector of the network
deviates a little bit from the optimal power vector,
and as long as all the channel gains stay constant, the
power levels will asymptotically move back to their
optimal values. In contrast, in deriving the sufficient
condition (27), no constant channel gain assumption
was made and no linearization was involved. However,

“the stability in £, — induced norm' does not imply

asymptotic convergence of the small power level devi-
ations to zero. Instead, it implies that the deviations
always remain bounded even if the optimal power vec-
tor changes due to the variations in the channel gains.
Also (27) is sometimes more conservative, since we al-
ways have:

”Gi(q_l)ueg—%ndﬁced g ”G‘-(q_l)”#fw—indused (29)

Example: Consider the integral algorithm in (8)
with gain 8, i.e.,;: §;(k) = pi(k — 1) + B(5; — 7i(k)), or
in linear scale: '

o A\B
pi=n-0 (). @

We have:
-1y _ 4 Ki(g™h) pa
Gi(¢™) = 1+¢Ki(g 1) 1-(1-pB)g?

We should first note that for the local loops to be

stable we need to have 8 € (0,2). It is now easy to
show that for 0 < B < 1, we have:

(31)

”Gi(q—_i)nfg—inéuceé = “Gi(q-z}“lm—-induced =10 4
(32)




Figure 5: £, — induced and £; — induced norms for G;
in the one step delayed case

and when § becomes larger than one, both induced
norms start increasing. This proves that not only do
the power levels, obtained from the distributed itera-
tive algorithm in [1] (where § = 1 is assumed), con-
verge to their optimal levels if the channel gains stay
constant, but also, under the channel gain variations,
the deviations of the power levels from their optimal
values always remain bounded.

It is instructive to also consider the case where an
additional delay is assumed for processing and propa-
gation, i.e., one step delay is inserted in the feedback
path in Figure 1. In this case:

-2 -1 -2
oy _ 9T K@) Bq
Gl =1 +¢2Ki(g)  1-q 1+ pBg2

First note that 8 = 1 will result in closed-loop poles
on the unit circle and therefore instability of the local
loops. The £, — induced and ¢5 — induced norms of
G; are shown in Figure 5. It can be seen that in order
to guarantee the bounded deviations of the power lev-
els in the network (i.e., the global stability in the £,
sense), we need to approximately have § < .27. More-
over, to ensure the global stability of the linearized
system in the £y sense, we need to have f < 0.33.
These bounds on the gain are rather small and could
therefore result in slow responses to the changes in
SIR, thresholds or the channel gains. However, re-
member that the sufficient conditions for global sta-
bility have been obtained under worst case scenarios
and therefore might yield conservative requirements
in some cases.

(33)

5 Conclusion

We reviewed SIR threshold approach for power con-
trol design in cellular wireless systems. Then we
discussed the decentralized regulator formulation for
power control problem. Using a robust control frame-
work, we obtained a sufficient condition, which would
guarantee that the deviations of the power levels

from their corresponding optimal values always re-
main bounded. We then showed that if no extra
delay is considered for processing and propagation,
the widely proposed integrator algorithm does indeed
yield a globally stable network as long as the varia-
tions of the channel gains do not force the network
out of its feasibility region. As future work, we shall
try to actually quantify some bounds on the power
level deviations.
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Abstract

An LQ strong stabilization problem is proposed. To determine when a controller with periodic gains is locally superior to a linear time
invariant compensator for this problem, a IT test is presented. For systems with strictly proper transfer functions, it is proven that the
frequency range where stable periodic controllers based on weak variations about the LTI case can give better performance than stable LTI
compensators is finite. In the development, a means fo evaluate the second partials of functions with respect to matrix-valued parameters is
introduced. For those systems where periodic control is warranted, techniques for designing optimal periodic strongly stabilizing controllers
are presented. Two examples detailing the application of the IT test are provided, as well as an optimal periodic controller design example.

© 2003 Published by Elsevier Science Ltd.

Keywords: Optimal control; Chattering; Stability properties; LQG control; Periodic

1. Introduction

Often it is desired that an output feedback eentroﬁiar not o

only stabilize a plant, but be stable itself. The process of
designing such a controller is referred to as the strong sta-
bilization problem. It has recently been shown that-all lin-
ear time-invariant (LTI) systems that are both detectable
and controllable can be strongly stabihzeei by permdlc con-
trollers (Savkin & Petersen, 1998). The proposed controlier
design consists of a full state controller that during a pe-
riod of length T operates without any measurements upon
a propagated state estimate. At the end of the period, this
state estimate is updatéd by a Luenberger estimator.

This method has'some drawbacks, however. The period
must be longer than a minimum length 7, to ensure strong
stabilization, and the gain of the controller between the pe-
riodic updates affects the size of Tp. Because a large period
implies poor performance in the presence of disturbances,

* A portion of this paper was presented in Aﬁgus: 2001 at the IFAC

Workshop on Periodic Control Systems in Cernobbio-Como, Italy. This
paper was recommended for publication in revised form by Associate
Editor ll W W under the direction of Editor il W H.
* Corresponding author.
E-mail addresses: wolfe@talus.seas.ucla.edu, jwolfe@ucla.edu
(J.D. Wolfe), speyer@seas.ucla.edu (J.L. Speyer).

0005-1098/03/$ - see front matter © 2003 Published by Elsevier Science Ltd.

doi:10.1016/50005-1698(03)00178-X

y'must be kept reasonably small, but reducing Ty requires
gh controller gains. Also, it is worrisome from a robust-
ness standpoint that the controller runs open loop over each
period. We will demonstrate that the disturbance rejection
capability of a stable continuous feedback controller is con-
siderably better.

The primary contribution of this paper is a cost function
formulation that induces strong stability. Because this cost is
non-convex, it provides an opportunity for periodic strongly
stabilizing controllers to produce a lower cost than strongly
stabilizing LTI controllers. Before designing a strongly sta-
bilizing controller, however, it is wise to investigate the fol-
lowing related question: If we restrict ourselves to consider-
ing only observer-structure controllers, and require the con-
troller to be stable, when can a control with periodic gains
potentially reduce the cost function compared to one with
fixed gains? To answer this question, we construct a IT test
{Bittanti, Fronza, & Guardabassi, 1973; Bernstein & Gilbert,
1980) that indicates when small periodic variations from the
best time invariant controller may improve the cost func-
tion, Of interest in its own right is the procedure we develop
for converting problems where the optimization parameters
are gain matrices into a form amenable to application of
the IT test. Since a considerable number of fixed structure
problems (including the static output feedback problem and
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several decentralized control problems) involve optimizing
over gain matrices, the method derived here appears to have
many extensions.

We then develop techniques for designing periodic con-
trollers that minimize our cost function and thus satisfy
strong stability. It should be emphasized that a periodic sta-
ble controller may be determined even when a static stable
controller does not exist. Furthermore, although the I7 test
will indicate when an LTI stable compensator is not a local
minimum (and that a stable periodic design can outperform
it), failure of the IT test does not imply that the stable LTI
design is globally optimal, so construction of a stable peri-
odic controller may still be worthwhile,

This paper is organized as follows: Section 2 formulates
a new cost function that penalizes unstable controllers. In
Section 3, we state some results on the second derivatives of
traces of matrix functions that are interesting in themselves
for numerical optimization of fixed structure controllers. The
IT test for strongly stabilizing controllers is presented in
Section 5, and it is shown that when a plant transfer func-
tion is strictly proper, gains based on weak variations from
the static gains can reduce the cost function below the cost
with an LTI controller only over a finite frequency range.
Section 6 describes the process of optimal periodic con-
troller design. The IT test is applied to example systems and
an optimal periodic controller is demonstrated in Section 7.
Section 8 concludes the paper.

2. The aptimal control problem with a strong
stabilization constraint

Consider the Gauss—Markov time-invariant system’ “de-

scribed by _— A
dx = (4x + Bu)dt + [I'; 0]di, W

dy =(Cx + Du)dt + [0 '] dw, 2)

where x€R", y€R?, u€R™ and We R? s a Brownian
motion process whose mdependent increment processes dw
have the statistics

E[dwdwT]=1dt, E{di%} =0, 3)
where E{-] indicates the expectation operator and / indicates
the identity matrix. Without loss of generality, I, is assumed
to have full row rank. Our cost function is the expectation
of the quadratxc cost function suggested in Bittanti et al.
(1973):

7] = Jim wE [ fo Tox + z:TRu)dz], )

“where v is the period of a cycle, k is the number of cy-

cles, O is a symmetric nonnegative definite matrix and R
is a symmetric positive definite matrix. The answer to this
optimization problem is the well-known linear quadratic

Gaussian controller

df = A%dt + Budt + L(dy — C% — Du) dt, 5)

u=—K3%, (6)

where K is the linear-quadratic regulator gain and L is the
gain of the Kalman-Bucy filter.

Observe that if we define e £ x — %, the closed loop
dynamics and cost can be rewritten as

-1 ][

I 0
+ { } dw, Q)
ry -LI, ;
Q' 0 x
2196 = 1 B (®)
—RIK Rk | |e]
1 ke
JIKL,7] = lim wE { f(zEQGzLQG)df] . ®

Note that the dynamlcs of the controller are described by
A & 4- BK LC+LDK, (10)

and that’ ﬁus tatrix need not be Hurwitz. .
Suppose we were to add a cost term that would penalize

an“unstable controller. If we constrained the controller to

have the same observer structure as before, the dynam:cs

»and ‘cost would look like
:"dxci = Agxq df + By dw, (1)
z = CyXa, (12)
1 ko
JIK,L7) = lim - E A (z"z)dt 13)
with
E[dwdw"}=1dt, E[dw]=0, =[xTe"x7],
A-BK BK
da=1| 0 A—LC 0|,
0 0 Ae
Iy, 0 0
Bq=|I1 -Ll 0|,
0 0 I}
[ o' 0 0
Ca=|-RV"K Rk 0 |, (14)
0 0 12
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where the new state xg, with the dynamics of the controller,
is forced by noise and included in the cost function via the
weight Or. To insure that all controller states are penalized
in the cost, it is required that O be positive definite and that
I have full row rank.

The cost expressmn above can be written in terms of the

covariance of x4, P Excl }

J= lim tr— [ PCae a8 (15)
k—oo kT 0

subject to

P = Ac!(f)P + PAcE(t)? + Bck(t)Bcl(z)Ts (16)

P>, an

where tr denotes the trace operation. Let us partition P into
n X n pieces as follows:

Py P P
P=|P, P, Py (18)
P, P P
An equivalent expression of the cost is then
~jm et [(po
+(Py — Py — Pl + P))K"RK + P30} dt. (19)

We can write a Hamiltonian for this optimization problem
in the usual way

H = H{P;Q + (P, — Pz — P + Pz)K RK
+ P30 + A(AqP + PA + BB, !)}

where 3 is almost identical to the Hamﬂt(}a{an useé
in Denham and Speyer (1964) and is simi ‘
(for a case with no process noise) used in. Ath
Following the standard derivation, the né '
for minimizing J are:

Theorem 1 (Pontryagin’s necessary :";Zcoaditions). The
following are necessary for inimizing J:

(1) 3 is minimized wzthresp ¢t to K and L,
2y #p=—dA/ds, Alkt)= {} L fork=10,1,2,.
() #4=dPjdr.

If 5# has a minimum and is continuously differentiable
in K and L, a necessary condition for minimizing 3¢ is
H# x =3 =0.1f we partition A in the same manner as P was
partitioned in (18) and assume that there is a steady-state
stationary solution to the optimization problem, then the
following equations are satisfied at the stationary point:

Ky =0=2RK(P; P}z—P + P3)

+2D"LY(AT,Py3 + AL Py + A3P3)

0)

+2BT(— APy + A\Pyy — AP,
+ APy — A'f_v,P;a — AiPj

+ A13P3; — A3 Py — A3Ps), @1
Hy =0=2AL02T + 2A5P13 + AL, Py3 + AsP3)KTDT

— 2 ALPy + APy + APy

+ A33Py3 + APh + A3P3)CT, (22)
—dA/dt =0=AyP + PAY + BB, (23)
dP/dt = 0=A%A + Ady + C3Ca. (24)

2.1. When is there a steady-state stationary solution to
the optimization problem

The conditions for determining when an LTI system may
be stabilized by a stable controller were found in Youla,
Bongiorno, and Lu (1974). The following extension of these
conditions to the MIMO case can be found in Vidyasagar
(1985):

Theorem' 2 (Parity interlacing property). Let Cy. de-
note the extended right half of the complex plane
({s€C: Re(s) 2 0}, together with positive infinity). A

- ﬁfarzz‘ P is strongly stabilizable if and only if the number
f peies of P (counted according to their McMillan de-

rees) between any pair of real C.-blocking zeros of P

s even.

Note that the stable compensator that stabilizes the system
in the above theorem is a proper matrix fransfer function of
arbitrary order—i.e. a strictly proper stabilizing compensator
with the same order as the plant may not exist. However,
there are constructive sufficient conditions for stable, strictly
proper full-order compensation (Wang & Bernstein, 1994).
If such a compensator can be found, it can be used as a
starting point for an iterative scheme to find & stationary
point of our optimization problem (Geromel & Bernussou,
1979; Toivonen & Mikild, 1985, 1987).

3. Some resulfs on second-order derivatives of traces

The sequel will require some results on second-order
derivatives of traces of matrix functions. The proofs are
substantially the same for each case, so the proof for one
representative case has been included in Appendix A.
Each of the other assertions can be proven using similar

arguments.

Proposition 3, Let X,Y,A,B be complex matrices of
appropriate dimension. Denote the (i,j)th component
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of a matrix Ey ()ij. Then

&
¢ —— tr(XAYB)=bja
5}’&;3 Xij { } e k-
& T
* Oyulx;; tr(XAY" B) = byajr.
| YTBYC) = ¢;;[BTYAT); .
* Gyudn, THAYTBYC) = culBTYAT] + (BYClyay
¢ 55&;5)6,}- fl’{.XAXTB) = byaj + byay;.
62
o —— (X" AYB) = agby;.
a kla Xij
#*

tr(XTAYTB) = a;b;.
é}"kiaxij ( ) i1Okj

2

T 49T — g ) TYAT1 c00
FI (X AY"BYC) = ay[BYC]y; + [B YA  lycy;

4. Products that convert linear matrix equations into
linear vector equations

4.1. Review of the Kronecker product

The following well-known results can be found in elemen-
tary linear algebra texts (e.g. Lancaster, 1969, Chapter 8):

Definition 4 (Kronecker operator). Let & denote a field.

If A€ P pxn and BE€ F x, then the Kronecker operation

on 4 and B, written 4 ® B, is an mo X np matrix whose
elements are defined by the relation [AQ B}, -::,,bs i W}zere
=(r—Do+s,I=0—-1Dp+]. ‘

}’ropasman S (Kronecker product). If 4€F mxn aﬁd
Be Foxp, then the Kronecker aperatzon A ® ‘B is a
well-defined product.

Prnposiﬁon 6 (Kronecker prth;é't and linear matrix equa-
tions). Consider the following matrix linear equation
for the unknown matrix X € Fyxn: AXB = C where
A,B,CeF nxn: We can consider this equattorz as an abbre-
viation for n* scalar equations for the n* elements of X. Let
us define the “vectorized” versions of X and C in & ,» by
=L, x5 d=[CLg, - LT
where X;., Cj, dénote the ith row of X and the jth row of
C, respectively. Then the equation AXB = C is equivalent

to Gx =c for some G € F n5.,2. One can easily verify that
G=A4A®B".

Proposition 7 (Kronecker product of positive definite
matrices). If A and B are two positive definite matrices,
then A ® B is also positive definite.

4.2. Another product

Recall that the matrix equation AXB = C can be trans-
formed to the form (4 ® BT )x =c, where x and ¢ “vectorize”
X and C by rows. Now, suppose we wished to express the
matrix equation AXTB=C as Gx =c, where x and ¢ are the
same as before. Motivated by this problem, we will define
a new operator.

Definition 8 (KT-operator). Let & denote a field. If
A€ F pnxy and BE F ;5 , then the KT-operation on 4 and

T
B, written A®B, is defined element-wise by

T
{A@B}H = ayjési,

~wherek=(r—1)o+sand =@~ 1)n+j.

Proposition 9 (KT-product). If 4 € & pxn and BE F oy p,
T
then the KT-operation A®B is a well defined product.

Proposition 10. Let CE€F pun, A€ Fmxo, X €F pxos
BEF yxn. Let AX™B = C :be a linear matrix equatlon in
X. = Veefsnze” X and C as follows:

“'5 . *]T

xT —{ I=[cl ], - CLT.

Tken 4Ax TB’ C is equivalent to the equation (A@BT)

‘ The j;roofs of the above propositions are trivial modifi-

~ cafions of the corresponding proofs for the Kronecker

product case.

Remark 11 (Relationship between Kronecker product and

KT product). If X is a matrix and the column vector x is
X vectorized by columns, then there exists a permutation
matrix S, whose elements are all either 0 or 1, such that Sx
is XT vectorized by columns. Then AXTB = C is equivalent

T
to both (4 ® BT)Sx = ¢ and (4QBT)x =c.

Using the KT product is preferable to using the Kronecker
product and a permutation for two reasons: the notation is
more compact, and the operation count is lower (the op-
eration count for computing a KT product is the same as
that required for a Kronecker product, while multiplying
permutation matrices is costly due to the large size of the
matrix).

5. Constructing a Il test

Before the IT test can be constructed, we must first obtain
expressions for the partial derivatives of 3 and for the
linearized equations of motion.
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5.1. Partial derivatives of ¢

Recall the Hamiltonian for our optimization problem is

H =t{P,Q+ (P — P;y — P, + P,)KTRK

+P30r + A(AaP + PA + BB ,)} (25)

Note that since P appears linearly in #, 3 /(8 prad pyy)=0
Vi, k1.

The second partials of # can be found using the results
on second partials of traces with respect to matrices devel-
oped in Section 3. These results can be expressed in a more
compact notation if we “vectorize” the parameter matrices
and write our results in terms of Kronecker products and
KT-products. As an illustrative example, we will derive the
second partial of 5# with respect to K.

Using the formulas in Section 3, one can find that

2
Ok Ok y
= Rge [Py

— _ #(P,K,L,A)

—Py; — P'l{z '%'Pﬁﬂl

+Reg[Py — Py — Pl + P3), . (26)

Let 6K be a small variation in XK. Vectorize éK by rows,
i.e. Ok(g—1)n+r = 0Ky Define H#(X, K, L, A)yx as follows:

kT (P,K, L, Ak .

]

&
ST TS XCELD,

g=1 k=1 e=1 f=1

Then, using what we know about Kronecker products and

Eqgs. (27) and (26) we have
H(P,KL,Ayx=2RQ [P

—P;z—sz-{—}z i

éf’kpﬁ: Hipys Hipys #ipys #, Hpys

pys» ¥ 1p, can be determined in terms. ef Kronecker and
KT—products of the system ;natnces ‘These expressions are
given in Appendix B. :

3.2. Linearization of t?ze equation of motion
The covarianéé P satisfies the differential equation

B(t) = Aa(YP() + PO +Ba(®Ba®. (29

To linearize this bilinear form, suppose that P°, K%, 1° are

nominal solutions that satisfy (29). Then take small varia-
tions so that P=P° 4+ 6P, K =K+ 8K, L=L°+8L. We can
eliminate the higher-order terms and express the result in
terms of “vectorized” quantities. This is easily accomplished
using the rules for “vectorizing” matrix equations given in
the sections discussing the Kronecker and KT products. For

(27) ;

instance,

pi=[(4—BK")®I+1®(4—BK®)op
+[(BKO)®I +I ® (BK®))p1a
+[-BQP)+BQP), —P) ®B+P ®B}§k

(30)

The state space equations for this and the other dp;’s (which
are given in Appendix C) can be put together into a large
linear system

5p = Fop + G[ok 81). (31)

A transfer function from the parameter variations 8k and 41
to the states Jp can then be computed in the standard way:

3p(s) = (s — F) 1 G[6k(s) Sl(s)]. (32)

5.3. The IT test

We will now create a 7 test for the fixed structure strong
stabilization problem, following the same general strat-
egy used in the state feedback case (Bittanti et al,, 1973;
Bernstein & Gilbert, 1980). Consider nonlinear system (16)
and associated cost (15). Let (31) be the linearization of
the dynamiics described in (16). Suppose also that we have
fourd a set of static control and observer gains that meet

the first-order necessary conditions for optimality.

Deﬁxﬁtian 12. An optimal periodic control problem is éaid
"o be proper if there exists a period ¥ and an admissible

control gains K(#), £(¢) such that

JIR (), L(t), 11 < J°, (33)

where J° is the cost corresponding to the optimal
steady-state solution of the problem, using the static gains
KO,I° Hence, a strong variation in the controller gains
from the steady-state solution has a lower cost.

Note that the term “proper” has historically been used
both to describe the optimality of periodic optimal control
problems and to describe transfer functions that have more
poles than zeros. To avoid confusion, we shall always ex-
plicitly state whether it is a periodic optimal control problem
or a transfer function that is proper.

Definition 13. An optimal periodic control problem is said
to be locally proper if there exists a period £ and admissible
weak variations éK(r) §L(£) in the controller gains such
that

JIR® + 6K (1), L° + 8L(1), 5] < J°, (34)

where J® is the cost corresponding to the optimal -

steady-state solution of the problem, using the static gains
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K°,I°. Here, a weak variation in the controller gains from
the optimal steady-state solution yields a lower cost.

Definition 14. Let (P,K,L) be a steady-state admissible
triple. The optimal periodic control problem is normal at
(P,K,L) if the following condition is satisfied for some 7:

rank[(¢”* ~ I,) G FG --- F*"'G]=n. (35)

Remark 15. Note that (F, G) controllability is sufficient to
ensure normality.

For convenience, we will drop the use of functional no-
tation for # and its derivatives—any usage is assumed
to occur at the stationary point. Let us define u(s) £
[8k(s)T 81(s)T]". Using the techniques of the previous
subsections, we can construct #yp, # w, and H(s), where
H(s) is the transfer function from u(s) to p(s). We also
know that #py = 0, #'pu = # .

Theorem 16. If the local minimum of the optimal
steady-state problem is normal and the (m X m) Hermitian
matrix

(36)

is partially negative for some w >0, then the optimal
periodic control problem is locally proper (and hence
proper). Conversely, if the optimal periodic control
problem is locally proper, then there exists w > 0 such that
IK{w) is not positive definite.

Proof. The proof for this theorem is the same as that g:ven
in Bittanti et al. (1973) and Bernstein and Gilbert (1980),
where the control input is the vectorized parameters u. {J

then there is a ﬁ‘eques:cy Q such that | f ,' € ptmf per:sdxc
control problem cannot be Iscal{y proper for frequencies
greater than Q.

Proof. The magnitude of H{jow) must attenuate at high
frequencies due to the asymptotic stability of the stationary
solution. Hence, IT(jw) — #yq 8s @ — oo. This means that
if the optimization problem satisfies the Legendre—Clebsch
condition, JI( jeo) must be positive definite for large enough
. Now, the elements of 5#,, are given by

#Hw=2RQ [Py — Py — P, + P}, (€))
Hy =24, ®[I2I7], (38)
Hyy = 2DT®[P A13}+2DT®[P3A3]

+2DTR[PL Az], 39)

so since D = 0, ', is positive definite if and only if both
Hyx and Sy are positive definite. We know that R, A5, and
I',I'] are all positive definite. The quantity [P, — P, — PL, +
P,] must be positive definite, since P is positive definite
and [Py — Py, — PL, + P,]=[I —1I0JP —10]". Hence
H'yx and 5y are the Kronecker products of positive definite
matrices, which means they are positive definite themselves.
So II(jw) converges to a positive definite matrix as @ —
oo, implying that there is a frequency Q such that I(jw) is
positive definite for all @ > . By the results of the previous
theorem, the optimal periodic control problem cannot be
locally proper for frequencies w > Q. O

We thus have the interesting result that a chattering con-
trol that is a weak variation from the static optimum can
never produce a better cost than the static optimum for any
plant with a strictly proper transfer function.

6. Designing periodic optimal controllers

Once we have determined that only periodic controller ‘

gains can strongly stﬁbilize'thé system, or if the IT test has
established that periodic gdins offer better performance than
static ones, it-remains to design these gains. We base our
design methodology on standard optimal periodic control
design practices, such as those in Speyer (1996).

Note first that choosing periodic gains makes the system
matrices 4, and B periodic by Eq. (14). This in turn makes

. the saiatmn to the Lyapunov equation (16) periodic, with a
@enod that is the least common muitiple of the periods of

‘the elements of 4y and By (from the Lyapunov Lemma of
‘Bittanti, Bolzern, & Colaneri, 1985).
Hence, if we specify a periodic functional form for the

gains X and Z, such as

N
K =Ko+ Y K sin(kor) + Kia cos(kot),
k=1

N
L=Ly+ Z Ly sin(kat) + Ly, cos(kat),
k=1

then we can optimize cost (15) with respect to the parameters
@, {Kx1,Kk2, Li1, Ly }, and the elements of P(0). This opti-
mization is subject to the constraints that P(0) is a positive
definite matrix and that P is periodic with period 7 = 2n/w.
Alternatively, a periodic spline function (DeBoor, 1978) for
the gains can be chosen, with the constraints

d d
K(0)=K(z), —K| =—K| ,
dr 1=0 d t=t
d d
L(0) = L(x), §LL=3 = ‘EL .

and the collocation points as optimization parameters.
Again, the elements of P(0) appear as optimization pa-
rameters and in the constraints that P is t-periodic and
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Fig. 1. Minimum eigenvalue of II(jw) vs. w.

P(0) is positive definite. The constraint that P(0) is positive
definite can be phrased in two ways:

(1) Require the leading principal minors of P(0) to be pos-
itive.
(2) Parameterize P(0) by its’ #9D%" decomposition

P(0) = %(0)2(0)%(0)", where % is unit vipper trian-
gular and 2 is diagonal. P(0) is then positive definite if
and only if all diagonal elements of 2(0) are positive.
. The periodicity constraints on P are transferred'to'the

parameters % and 9, whose differential cquaﬁons are
given in Tapley and Peters (1980).

These nonlinearly constrained optimiza probiems can
be solved by standard methods such as Sequential Quadratic
Programming (Wilson, 1963; Boggs “Tolle, 1996) or
accelerated gradient pro_]ectxon (Spe;?ér Keliey, Levine, &
Denham, 1971). .

Finally, note that there is no festnc‘aon in the above prob-
lem formulations requiring existence of a static solution. But
nonlinear optimization problems should never be undertaken
lightly—the IT test indicates when it is useful to attempt the
difficult process ‘of tithe-varying controller generation if a
strongly stable LTI solution has already been found.

7. Examples '
7.1. I test for a plant with a DC term

Consider the linear system and cost given by
A=1, B=1, C=15 D=1, I=1,
=1, @=1, R=1, =001, Ir=1L

Note that the open loop transfer function, (s +0.5)/(s — 1),
meets the parity interlacing property (Youla et al., 1974)
and, therefere the plant may be stabilized by a stable lin-
ear time invariant controller. However, the resulting con-
ventmnal LQG controller is unstable.

A static solution for the modified cost given by (13) was
found using the methods in Toivonen and Mikila (1985).

. The results of the local optimization were K° = 3.9112,

'I° = 1.1774. The pole of the static optimal controller was
then —0.0724. The static optimum gains were also calcu-
lated for several other values of R. The IT test was then
performed for each cost function and corresponding static
optimal controller. For each case, the minimum eigenvalue
of II is plotted vs. frequency in Fig. 1. Note that when
R =1, the minimum eigenvalue of IT is never negative.
Hence, there is no instance at which a lower cost can be
realized via periodic gains. However, if R is reduced, the
cost may potentially be reduced below the static optimum
value. When R = 0.3, the minimum eigenvalue of I7 falls
below 0 for frequencies between 2 and 10.5 rad/s. If R
is reduced to 0.2, the minimum eigenvalue of I7 is nega-
tive for all frequencies greater than 2 rad/s, which means

_ a chattering solution may reduce the cost below that of

the static optimum. Note that the plant’s transfer function
is not strictly proper, so the restriction on the optimality
of high frequency gains given by Corollary 17 does not
apply.

7.2. I test for a flexible structure

The problem of positioning the tip of a flexible robot
arm using only sensors and actuators at the base of the arm
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Fig. 2. Minimum eigenvalue of II{jw) vs. .

can be described by the following linear system and cost
parameters:

0 1 0 0 0
P R I 11
0 0 0 1 0
1 0 -1 0 0
0 00 0 0
0 000 0
ri:a’Q=001a’__
1 000 o0f
C=[1000], D=0, Iy=1, -
R=107, Qr=102L, Ti=L,

where I, denotes the four-diimensional unit matrix. The
open-loop transfer - function “for this system is ((s + j)
(s — N/(s*(s +1.41427)(s — 1.41425)), which satisfies the
parity interlacing property (Youla et al., 1974). This plant
may thus be stabilized by a stable LTI controller. Despite
this, the LQG gains yield an unstable controller.

A static soliition for the modified cost given by (13) was
found using the methods in Toivonen and Mékild (1985).
The strongly stabilizing results of the local optimization
were

K =[8.1188 2.0586 — 3.7766 4.9878],
=[7.8756 6.0895 5.0344 — 1.7341]".

The I7T test w' then }Jefformed Fig. 2 plots the minimum
i 1T vs. frequency. Note that the high-frequency
behavior Carollary 17 predicts, and that the opti-
miZation prfiblem is locally proper only across a very
farrow3frequency band.

. Periodic optimal control

Strongly stabilizing periodic optimal controllers were
generated for the one-dimensional plant described at the
beginning of the section with parameters Q@ =1, R = 0.2,
using the methods described in Section 6. The performance
of these controllers can be evaluated by comparing them
to standard LQG optimal controllers, because the optimal
LQG cost when the strong stability constraint is removed
forms a lower bound for the cost that a strongly stabilizing
controller can achieve. Using Sequential Quadratic Pro-
gramming, we calculated strongly stabilizing optimal values
for K and L when they were each parameterized by either
three elements in a harmonic series or by 10 collocation
points for a cubic spline spaced equally in a period. Table 1

Table 1

Efficiency comparison of compensators

Controller gain type Cost by Eq. (9) Cost by Eq. (13)
LQG 3.6544 Undefined

Static gains 4.0444 4.0992

Three harmonics 3.9636 4.0054

10 point spline 3.9295 3.9685
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Fig. 4. Estimator gain.

compares the costs achieved by these compensators with
the costs achieved by the strongly stabilizing static gains
and the unstable LQG compensator. Note that the cost
corresponding to the spline-parameterized strongly stabi-
lizing controller was 29% closer to the lower bound LQG
cost than that of the optimal strongly stabilizing static
controller.

Figs. 3 and 4 plot the optimal values of the controller gain
K(t) and the estimator gain L(#) over two periods, where

the gains are parameterized both by a spline with 10 col-
location points and by three harmonics of a Fourier series.
Note that the shape of the gains are approximately the same
for both parameterizations. More interestingly, observe that
when the value of the controller gain is large, the value
of the observer gain is small, and vice versa. The optimal
strongly stabilizing periodic controllers thus oscillate be-
tween controller-dominant and observer-dominant phases in
a smooth manner.
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Fig. 5. Closed-loop responses to a sinusoidal disturbance.

The smoothness in the variation of the cubic spline con-
troller’s gains appears to enhance disturbance rejection rel-
ative to controllers constructed using the methods in Savkin
and Petersen (1998). Fig. 5 illustrates the closed-loop re-
sponses to the disturbance sin(#) for both types of controller.
Note also that the Savkin—Petersen controller for this exam-

ple was chosen with the smallest possible sampling penod U
- that would guarantee strong stability. When larger sampl&

periods were used, the Savkin-Petersen closed- loep sy
exhibited even larger dev:atmns

8. Conclusion

A II test applicable to a linear-quadratic-Gavissian strong
stabilization problem has been developed, détermining when
periodic coefficients in the gain matrices can potentially re-
duce the cost. One 1mportant restriction to the test is that
a stable, strictly proper: controller of plant order must be
found to ensure the existence ofa strongly stabilizing static
solution. Obviously, if no static solution exists, the optimal
strongly stabilizing controller is time varying.

Techniques were- then developed for synthesizing opti-
mal periodic strongly stabilizing controllers. Because these
techniques afe computationally intensive, the I7 test is valu-
able for determining in advance whether a periodic con-
troller may improve performance. An example demonstrated
that a strongly stable periodic optimal controller generated
with our methods rejected persistent disturbances better than
competing methods.

Methods used to derive the IT test in this can also be ap-
plied to other control problems. The material in Sections

3 and 4 enables thany extensions to the work in Athans
(1968} and Dehham and Speyer (1964) on minimization
of ﬁmctmns dependent on matrices. In particular, the tech-
niques used here can be trivially modified to deal with
pfc‘blams involving optimizing decentralized controllers for
systems ‘with fixed modes (Wang & Davison, 1973). -
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Appendix A. Constructing second partials of trace
functions

The proofs of the assertions in Proposition 3 all fol-
low the same general form. Therefore, only the construc-
tion of (8?/0yudx;;) tt(XAYTBYC) is provided here. Each
of the other assertions may be constructed using similar
arguments.

Let X have dimension # X 7 and let Y have dimension
6 x p. We know from Athans (1968) that

b7}

I T
o tr(XAY"BYC)

d
=— tr(4YTBY
- tr( CX)

=[(4Y"BYC)"); =[C"Y"B"YA");. (A1)
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Now, [YTBT Y], can be expressed as Ef; ' 50 Vashrgyuts
s0 :

P oA
[CTY"BTYA"]; =) cal VB Y] 0

s=1 t=1

= Z Z Csi (z Z Yas rqyrt) ajt. (A2)

s=1 =1 g=1 r=1
Hence
@2
ayk&' axr;

@ 5 s P
= Z Cii Z bﬁyr;&}? + Z Csi Z qubkqﬁﬁ
=1 r=1 s=1 g=1

=cy[BTYAT)y; + [BYClya1. (A3)

tr(XAY?BYC)— [CTYTBTYAT}&

Appendix B. Second partials of the Hamiltonian

Using the definitions found in Section 3, the second par-
tials of # have the following form:

Hxx =2R® [P, — P13 — Pl + Py, ' (B.1)

Hy =24, @[3, (B2)

Hkp, ={RK}§I+ [RKI®I

T .
—[BTA4,)8I - [B"4,]18®1, B3

‘ T T 4 10
Hxp, =[B Ap}Q®I+[B ApiR]

+IRK]® 1 + [RK]B), @4

Hxp, =B A @1~ [BAs)Rl

F DL A1 ©1 + DTLASIRL, (B5)
Hxp, =—~2RK] @~ 2ARKIS! o

+2[8" A1) @1“% 2{3”14123%1 (B6)
Hxp, =—2AB"AL] ® I+ 2{9%% A3

2B A&, - ®7)

T
Hgpy =2[BT AR — 2[BTALI® I
+2[DLTAL]® 1, (B.8)

H g, =2D" ®[P 3Ail+ EBT®[P3113}

+2D"B[PL Ax] (B9)
2341231 .

Hyp, =0, : ' (B.10)
T ‘
Hipy=—4®C — A, ®C, (B.11)

T T
H1p, = —As&C + A3@[DK]

-A3® C+ A3 @ [DK], (B.12)
Hip,=—24L1C, (B.13)
Hip, =245, @ C+245, Q[DK], (B.14)
Hip, = —24%, ® C + 241, ® [DK] — 2An®C, (B.15)

where 7 denotes a » X n identity matrix.

Appendix C, Linearized dynamics of the covariance

In Section 5, small variations were made to parameters
in the covariance Lyapunov equation. Using the properties
of the Kronecker and KT products, the expressions for the
small variations in the covariance matrix can be written
compactly as

8P =[(4 — BK)®1 + I ® (4 — BK)]6P
+{(BK)SI +1 8 (BK)]5P12 +[— B® P,

' ' T T
4B ® Pyj; — Pi®@B + P,®B16K, (C.1)

ff;,apg ~[A—LC)®I+I® (4 —LC)6P;

+[-I1®(P,CT) - (P;CT)&T :
+I1Q (LML) + (erf’g)@aéz, (C2)
P3=[(4—BK —LC+LDK)Q®I
+I ® (4 — BK — LC + LDK)]0P3
T
+[—B®P; +(LD)® P; — P;®B
+ Psé{LB)}éK +[-1®((P:CT)+1®(P:KTDT)
TN o
— (PsCT)RI + (PsKTDT)RITOL, (C3)
6P12=[(BK) ® I6P,
+[(4—-BK)®I+ I®(4—LC)I6P),
+[-B®P,,+B®P)J6K
T
+[— (PCT)RISL, (C4)
6Pi3=[(4—-BK)®I+I1®(4—BK — LC + LDK)]
x8Py3 + [(BK) ® I16P; + [~ B® Py
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T T
+B® P}; — P;3®B + P13(LD)J0K

+{—(P 13CT)‘§1 +(P 13KTBT)f§I 1éL, (C.5)

0Py =[(A—LC)®I+1®(4—BK — LC + LDK)}6Py3
T T T AT
+[— P3®B + Pu®(LD)OK + [ — I @ (PLCT)

— (PuCY®T + (PK"DV)SIISL. (C6)
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A generalized least-squares fault detection filter

Robert H. Chen*!, and Jason L. Speyer

Mechanical and A erospace Engineering Department, University of Californio, Los A ngeles,
" Los Angeles, CA 90095-1 597, USA.

SUMMARY

A fault detection and identification algorithm is determined from a generalization of the least-squares
derivation of the Kalman filter. The objective of the filter is to monitor a single fault called the target fault

* and block other faults which are called nuisance faults. The filter is derived from solving a min-maXx problem

with a generalized least-squares cost criterion which explicitly makes the residual sensitive to the target fault,

least-squares fault detection filter becomes equivalent to the unknown input observer where there exists
a reduced-order filter. Filter designs can be obtained for both linear time-invariant and time-varying -
sysiems. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: fault detection and idmtiﬁcation; unknown input observer; worst case design; time-varying
system

1. INTRODUCTION

Any system under automatic control demands a high degree of system reliability. This requires
a health monitoring system capable of detecting any plant, actuator and sensor fault as it occurs
and identifying the faulty component. One approach, analytical redundancy which reduces the
need for hardware redundancy, uses the modelled dynamic relationship between system inputs
and measured system outputs to form a residual process used for detecting and identifying faults.
A popular approach to analytical redundancy is the unknown input observer [1] which divides
the faults into two groups: a single-target fault and possibly several nuisance faults. The nuisance
faults are placed in an invariant subspace which is unobservable to the residual. Recently,
approximate unknown input observers have been developed which have improved robustness to
uncertainties and applicable to time-varying systems [2.31.

In this paper, a generalized least-squares fault detection filter, motivated by Chung and Speyer
[2] and Bryson and Ho [4], is presented. A new least-squares problem with an indefinite cost
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748 R. H. CHEN AND J. L. SPEYER

criterion is formulated as a min-max problem by generalizing the least-squares derivation of the
Kalman filter [4] and allowing the explicit dependence on the target fault which is not presented
in Reference [2]. Since the filter is derived similarly to Reference (2], many properties obtained in
Reference [27] also apply to this filter. However, some new important properties are given. For
example, since the target fault direction is now explicitly in the filter gain calculation, a mecha-
nism is provided which enhances the sensitivity of the filter to the target fault. Furthermore, the
projector, which annihilates the residual direction associated with the nuisance faults and is
assumed in the problem formulation of Reference [2], is not required in the derivation of this
filter. Finally, it is shown that this filter completely blocks the nuisance faults in the limit where
the weighting on the nuisance faults is zero. For time-invariant Systems, the nuisance faults are
placed in a minimal (C, A)-unobservability subspace, and the generalized least-squares fault
detection filter becomes equivalent to the unknown input observer. For time-varying systems, the
nuisance faults are placed in a similar invariant subspace, and the generalized least-squares fault
detection filter extends the unknown input observer to the time-varying case. In the limit,
a reduced-order filter is derived for time-varying systems.

The problem is formulated in Section 2 and its solution is derived in Section 3 [2,4]. In Section
4, the filter is derived in the limit [2,5]. In Section 5, it is shown that, in the limit, the nuisance
faults are placed in an invariant subspace. In Section 6, the reduced-order filter is derived in the
limit. In Section 7, numerical examples are given,

2. PROBLEM FORMULATION

Consider a linear, observable sysfem with two failure modes [1,2]
X=Ax+ Bu+ Fyu, + Fyu, {1a}
y=Cx+v (1b)

where u is the control input, y is the measurement, v is the sensor noise, y, is the target fault, and
U2 1s the nuisance fault. All System variables belong to real vector spaces,x € Z,uc %, and ye ¥,
System matrices 4, B, C, F, and F, are time-varying and continuously differentiable. The failure
modes, g, and u,, model the time-varying amplitude of the failure while the failure signatures, F
and F,, mode] the directional characteristics of a failure, Assume F; and F, are monic so that
Fi #£0and F, # Qimply F, 1 #0and Fop, #0, respectively. In References [1,2], it is shown that
this model, used to determine the fault detection filter, represents actuator, sensor and plant
faults. There are two assumptions about the system (1) that are needed in order to have a well-
conditioned unknown input observer. Assumption 2.1 ensures that the target fault can beisolated
from the nuisance fault [1,2]. The output separability test is discussed in Remark 1 of Section 5.
Assumption 2.2. ensures a non-zero residual in steady-state when the target fault occurs for
time-invariant systems [3,6]. .

Assumption 2.].

F, and F, are output separable.

Assumption 2.2,

For time-invariant systems, (C, 4, F,) does not have invariant Zero at origin,

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747-757
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The objective of blocking the nuisance fault while detecting the target fault can be achieved by
solving the following min~max problem:

] .
min max max 3 [ (sl — leakier = Iy = Cxlf-) e — Lt — 2, )
ity g2 xto) 2 1 2

subject to (1a). Note that, without the minimization with respect to 4, (2) reduces to the standard
least-squares derivation of the Kalman filter [4]. tis the current time and y is assumed given. 0.,
0, V and II, are positive definite. y is a non-negative scalar. Note that Q;, @, [Ty and y are
design parameters to be chosen while ¥ may be physically related to the power spectral density of
the sensor noise because of (1b) [4]. The interpretation of the min-max problem is the following,
Let u¥, u3 and x*(t,) be the optimal strategies for 1, Ha and x(to), respectively. Then, x*(z| ;) the
x associated with uf, u¥ and x*(ty), is the optimal trajectory for x where t €[t,, £] and given the
measurement history Y; = {y(t)|t, <7 <t}. Since p; maximizes y—Cx and p, minimizes
Yy — Cx, y — Cx* is made primarily sensitive to 4, and minimally sensitive to u,. However, since -
x* is the smoothed estimate of the state, a filtered estimate of the state, called X, is needed for
implementation. From the boundary condition in Section 3, at the current time ¢, x*(¢| Y,) = £(¢).
Therefore, y — C% is primarily sensitive to the target fault and minimally sensitive to the nuisance
fault. Note that when Q, is larger, y — C£ is more sensitive to the target fault. When y is smaller,
y — C% is less sensitive to the nuisance fault. In Reference [2], the differential game blocks the -
nuisance fault, but does not enhance the sensitivity to the target fault. In Section 5, it is shown that
the filter completely blocks the nuisance fault when y is zero by placing it into an invariant
subspace, called Ker S. Therefore, the residual used for detecting the target fault is

r=H(y—C$) ©)
where %, the filtered estimate of the state, is given in Section 3 and
H%—-®%  KerH=CKerS, H=I1—-C Ker S[(CKerS)"CKer §]™(CKer$)T  (4)

Ker S is given and discussed in Sections 4 and 5.

3. SOLUTION

In this section, the min-max problem given by (2) is solved [2,4]. The variational Hamiltonian of
the problem is ‘

H =3 (lpdlgr ~ lualior — Iy — Cxl3-1) + 2T(Ax + Bu + Fupy + Fyu)

where AeZ" is a continuously differentiable Lagrange multiplier. The first-order necessary
conditions [4] imply that the optimal strategies for py, p, and the dynamics for 1 are

Bt =—Q.FT1, u =§Q2F§L b=—ATA-CV "y —Cx)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747-757
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with boundary conditions
Ato) = Mo[x*(to) = 0], A1) =0 ' 5)

By substituting 41 and 45 into (1a), the two-point boundary value problem requires the solution to

x* A %FzQng bl FIQEF;F x* Bu ’
il- C'v-ic AT 1 + —CTy-1y (©)

with boundary conditions (5). The form of (5) suggests that
A=M(x*-2%) (7

where I1(to) = Iy, £(to) = £, and £ is an intermediate state. By differentiating (7), using (6),
adding and subtracting 1A% and CTV ~!C%, the following dynamic filter structure results:

TLE = IIA% 4+ [Bu + CTV ™y — CR),  #(to) = %o (8)
~ I =TI4+ A™1 + ?I(%F;ZQZF;{ - F@,FT}H = CVTIC, T(ty) =TI, ©)

Since x* = X at current time ¢ (5), the generalized least-squares fault detection filter is {8). Note
that (8) is used by the residual (3) to detect the target fault.

4. LIMITING CASE
In this section, the min-max problem (2) is solved in the limit where yiszero {2,5]. When y is zero,
there is no constraint on y, to minimize y — Cx. Therefore, the nuisance fault is completely

blocked from the residual which is shown in Section 5.
In the limit, the min-max problem (2) becomes

. 11 1 . o
min max max > | (lpfig;r — lly — Cx|[$-+) de — 5 Ix{to} ~ Lollzy, (19
By #e  x{g) & g,

This problem is singular with respect to p,. Therefore, the Goh transformation [5]is used to form »
a non-singular problem. Let

$0= [ 10 w=x-Fg,
1y
By differentiating o, and using (1a),

i}.il =2§.&1 '}‘.BH"*‘F;}Q ‘f".Blﬁ?&; {1}‘)

Copyright © 2000 John Wiley & Sons, Lid. Int. J. Adapt. Control Signal Process. 2000; 14:747-757
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where By = AF, — F,. By substituting «; into (10), the new min-max problem is
1

. 1 _
mn Hfix mé‘fi 3 fifﬂaf?é;* - ﬁqﬁ‘aﬂg%g{:’f:mcy, ~ly- Ciiiﬁé'l +(y— CGI)TV ICFzﬁéz :
# 1 &kl iy

+ GIFzCTV Ty = Coy)] dr — é les(t3) + Faha(23) — %ol 12

subject to (11). If FICTV ~'CF, fails to be positive definite, (12) is still a singular problem with
respect to ¢,. Then, the Goh transformation has to be used until the problem becomes
non-singular. If FIC"V™'CF, =0, let

$ae) = ﬁ;{s) ds, a3 =, — By,

Then, d; = Aw, + Bu+ Fip; + By¢, where B, = AB, — B,. If FIC"V~ICF, >0, the Goh
transformation is applied only on the singular part [6]. The transformation process stops if the
weighting on ¢,, BIC"V ~'CB,, is positive definite. Otherwise, continue the transformation until
there exists B, such that the weighting on ¢,, BT_,CTV - 'CB, -1, is positive definite. Then, in the
limit, the min-max problem (2) becomes

. ir -
min maxmax > [* Dl — Il v~ 1y — Colfs + & — CaV~ By 16y
£ s Fiify o .

+ GIBLACTY My — Co)] e ~ 3 loge3) + BEES) — Lol (13)

subject  to &, = Aoy + Bu + Fypu, + By, where B = [F; By B, ---B,_,] and ¢=
[¢7 ¢3 - ¢71". The min-max problem (13) can be solved similarly to (2). Therefore, the
derivation [6] is not repeated here. The limiting generalized least-squares fault detection filter is

S%=SA% + SBu + [SB(Bi-;C"V™'CB,_ )" 'BI_,C"V"1 + CTH'W 'Hl(y — CR) 14

where
—S=84A+A"Ss+ S{Bk{BI_ICTV"CB;(_I}_"BE — FiQ,FT1S = CTH'V~HC (15)
H=1I-CB,_ (B} {CV7ICB,_ ) 'BI_,C™V""' and A=A — B(Bi-C"V~'CB,_ ) 'Bl_,
C™V™1C subject to £(t3) = £, and S(tg) = Ilo — HoB(B™1,B)~ 1B 11,. However, (14) cannot
be used because S has a null space which is shown in Theorem 4.1. Therefore, a reduced-order
filter for (14) is derived in Section 6.
Theorem 4.1.
S[Bi-y Bi-; - By Fy]=0.

Proof. The proof is similar to Reference [2] and can be found in Reference {61 O

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747-757
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5. PROPERTIES OF THE NULL SPACE OF §

In this section, some properties of the null space of § are given. It is shown that the null space of
S is equivalent to the minimal (C, 4) — unobservability subspace for time-invariant systems and
a similar invariant subspace for time-varying systems. Therefore, the limiting generalized least-
squares fault detection filter is equivalent to the unknown input observer and extends it to the
time-varying case. The minimal (C, A)-unobservability subspace is a subspace which is (4 — LC)-
invariant and unobservable with respect to (HC, 4 — LC) for some filter gain L and projector
H [1]. One method for computing the minimal (C, 4)-unobservability subspace of F,, called
7, here,is 7, = #, ® ¥, [1] where #3=[Bi-1 Bix—y -~ By F,]is the minimal (C, A)-invari-
ant subspace of F, and ¥ is the subspace spanned by the invariant zero directions of (C, 4, F,).
Note that the associated H is

H%-%, KeeH=CB,_, B=I- CBi -1 [(CBy—1)"CBy -] YCB,_ )" (16)
Note that Ker H = Ker A.
Theorem 5.1 shows that the null space of S is a {(C, A)-invariant subspace. Theorem 5.2 shows

that the null space of S is contained in the unobservable subspace of (HC, A — LC).

Theorem 5.1.

Ker S is a (C, A)-invariant subspace.

Proof. The dynamic equation of the error, e = x — £, in the absence of the target fault and
sensor noise can be obtained by using (1) and (14): '

Sé =[SA+ SB.(B{_,C"V~'CB,_ ) 'Bl_ . C"V~'C + CTH'V~'AC]e

because SF, = 0. By adding Se to both sides and using (15),

d
37 (8¢) = —{[4 — Bu(BI-,C"V~1CB,_,)'B]_,C"V - ICT"

+ S[—FiQ.F] + By(B{-,C"V"'CB,_;)"'BI]}Se a7
If the error initially lies in Ker S, (17) implies that the error will never leave Ker S. Therefore,
Ker S is a (C, A)-invariant subspace. O
Theorem 5.2.

Ker S is contained in the unobservable subspace of (HC, 4 — LC).

Proof. Let { € Ker S. By multiplying (15) by {" from the left and { from the right,
d T THrTHTy -1y
-&;(C SO)=0C'HV'HC{=0

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747-757
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Then, HC{ =0 because HC{ =0 and Ker A =Ker A. From Theorem 5.1, KerS is a

(C, A)-invariant subspace. Therefore, Ker S is contained in the unobservable subspace of
(HC, 4 —L0). O

From Theorem 4.1, CKerS> CB, .. From Theorem 52, CKerS < CB,_,. Therefore,
C Ker § = CB,_, and A (4) is equivalent to & (16). Note that (16) is a better way to form H
which is used by the residual (3) because it does not require the solution to the limiting Riccati
Equation {15). ]

For time-invariant systems, it is important to discuss the invariant zero directions when
designing the fault detection filter. The invariant zeros of (C, 4, F;) will become part of the
eigenvalues of the filter if their associated invariant zero directions are not included in the
invariant subspace of F, [1]. From Reference [3,6], the null space of S includes all the invariant
zero directions if the nuisance fault direction is modified to the invariant zero directions.
Therefore, the invariant zeros will not become part of the filter eigenvalues. From Theorem 4.1
and modified nuisance fault direction, the null space of § contains the minimal (C, A)-unobserva-
bility subspace of F,. By combining with Theorem 5.2, the null space of S is equivalent to the
minimal (C, 4)-unobservability subspace of F;, and the limiting generalized least-squares fault
detection filter is equivalent to the unknown input observer. Note that the invariant zero and
minimal (C, 4)-unobservability subspace are only defined for time-invariant systems. For time-

varying systems, Theorems 4.1, 5.1 and 5.2 imply that the null space of S is a similar invariant .
subspace. :

Remark 1.

In order to detect the target fault, F; cannot intersect the null space of S which is unobservable
to the residual. If it does, the target fault will be difficult or mmpossible to detect even though the
filter can still be derived by solving the min-max problem. If F; does not intersect the null space of
S, Fy and F, are called output separable [1], and the output separability test can be stated as
CB,-1nCB;_; = where B;_, is the Goh transformation of F L

6. REDUCED-ORDER FILTER

In this section, the reduced-order filter is derived for the limiting generalized least-squares fault
detection filter (14). The reduced-order filter is necessary for implementation because (14) cannot
be used due to the null space of S. Since S is non-negative definite, there exists a state

transformation T such that
S0
TST = 18
r [0 G] 18

where § is positive definite. Theorem 6.1 provides a way to form the transformation.

Theorem 6.1.

There exists a state transformation I” where

Z, 0
Z Ker§S}1=T 19
[z Kersy=r " (19)
Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747~757
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Zisany nx(n— k) continuously differentiable matrix such that itself and Ker S span the state
space where n = dim & and k, = dim(Ker S). Z, and Z, are any (n — ky) x (n — k,) and kyxk,
invertible continuously differentiable matrices, respectively. Then, the I' obtained from (19)
satisfies (18). :

Prodf.

0 0 0
=T =0 = I'ST =0
Ker S [zj - sr[zj 0 S [zj

Since Z, is invertible by definition and T™ST is symmetric, (18) is true. O

Note that Theorem 6.1 does not define I uniquely and I" can be computed a priori because
Ker § can be obtained a priori.

By applying the transformation to the estimator state, T™'% & 7 = [#] #3]". By multiplying
(14) by I'" from the left, using I'T™* = J, and adding I''STT~'£ to both sides, the limiting filter
can be transformed into two equations,

_’;\1 = S(A4;, =T + S(4, — Tia)ifs + SMu
+ [SG(DICIV™IC,D,) " DICIY ! + CIH'V'HI(y — Cy#; — Cz??z} (20a)

0=C:HVT'H(y — Cyiy — Csff) (20b)
. [Ty T Ay A M
ror=| " “], r“ar:[ H “}, r-lsz[ ‘J, CT =[Cy C5]
{rzi I, Azy Az M, e

Note that I'"! and T can be computed 4 priori from (19). From (20b),
HC;=0 ' 21

because y — Ci#); — Cff; is arbitrary. By multiplying (15) by I' from the left and T from the
right, subtracting I''ST and I'SI”™ from both sides, and using I'T™! = I, the limiting Riccati
equation can be transformed into two equations,

0= g{:‘-{zz - rlz - GJD;C%V“C;D;}_ID%-CEV_ICB} (22)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapr. Control Signal Process. 2000; 14:747-757
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Note that this filter is equivalent to the optimal stochastic fault detection filter [12] which is an
approximate unknown input observer.

4. LIMITING CASE

In this section, the robust multiple-fault detection filter is determined in the limit as y; — 0,
i=1---5, when there is no complementary subspace. It is shown that, if s = g, the filter places
each associated nuisance fault into the unobservable subspace of its associated projected
residual for both time-invariant and time-varying systems. Therefore, the filter becomes
equivalent to the RDD filter in the limit and extends the RDD filter to the time-varying case. In
Section 4.1, the geometric structure of the detection filter is given [3]. In Section 4.2, the robust
muitiple-fault detection filter is determined in the limit. In Section 4.3, the conditions to ensure
that the faults can be isolated are discussed.

4.1. Geometric structure of detection filter

The BID filter places each fault y; into an invariant subspace Z; [3] where
Ti=W:®7: @n

7, is called the minimal {C, 4)-unobservability subspace or the detection space of F,. #; is the
minimal (C, A)-invariant subspace of F; given by

Wi=Imlfyr - A%fyy fiz - A%fp - fip o A fip) 22)

where f;; is the jth column of F;, J;; is the smallest non-negative integer such that CA% f; 70
and p; = dim F,. ¥ is the subspace spanned by the invariant zero directions of (C,4,F). The
RDD filter places each associated nuisance fault j, into an invariant subspace J; =[7; ---
Ty Tipa --- T,] which is the unobservable subspace of (H,C,4 — LC) where L is the filter gain
and H; is given in (9) [3]. Therefore, each associated nuisance fault is in the unobservable
subspace of its associated projected residual.

For time-varying systems, the minimal (C, 4)-invariant subspace of F; is [10]

Wi=1Imlbiio -+ birg, bizo -+ bizs, - bipo - bips,,] (23)

which is found from the iteration defined by the Goh transformation (10). For time-varying
systems, the minimal {C, A)-unobservability subspace cannot be determined by (21) because the
concept of invariant zero is for time-invariant systems only.

Remark 1 : :
Equations (22) and (23) produce the correct invariant subspaces only when Rank(C#7) = p;. If
Rank(C#7)< pi, a new basis for F; can be obtained such that Rank(C#;) = p; [17]. For
example, for time-invariant systems, F; = [f;; fi2] where fj; # fi» and Cf;; = Cf;»#0. Then,
W;=Im[fi: fi2] from (22). Since Rank(C#;)) =1, (22) does not produce the
.correct invariant subspace. By using a different basis for F, e.g. [fi1 fi1 — fi2l, #i=
Im[fin fir — fiz A(fix — fi2)] from (22) which is equivalent to Im[fi; fi2 A(fi1 — fi2)].
Since Rank(C#7) = 2, (22) produces the correct invariant subspace using this new basis of F,.

This invariant subspace can also be confirmed by using the recursive algorithm given in
Reference [3].

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:675-696
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4.2. Limiting robust multiple-fault detection filter

In this section, the robust multiple-fault detection filter is determined in the limit as y; = 0,
i=1---s, when there is no complementary subspace and s = ¢. The filter for time-invariant
systems is considered first. Then, the filter for time-varying systems is considered in Remark 3 at
the end of this section. First, it is assumed that in the limit, J7 - -§; are (4 — LC)-invariant
where L is in (14). This will be shown to be true later. Then, the filter gain (14) is simplified in the
limit by using Lemma 4.1 so that the simplified filter gain does not require the solution to the
two-point boundary value problem, (12) and (15). Lemma 4.2 shows that the simplified filter
gain minimizes the cost criterion. Therefore, the simplified filter gain is equivalent to (14) in the
limit. Lemma 4.2 also shows that (9) is the optimal projector in the limit. Finally, Theorem 4.3
shows that 97 - -'ﬁ; are (4 — LC)-invariant where L is the simplified filter gain. Therefore, the
filter becomes equivalent to the RDD filter in the limit. Corollary 4.4 shows that 77 - - - T4 are
(4 — LC)-invariant where L is the simplified filter gain. Therefore, the filter also becomes
equivalent to the BJD filter in the limit.

Lemma 4.1
Define a new projector H; where

H:% %, KerH;=%;, H=I-3JT9)"F]
for i=1---q. In the limit, H; has the following properties:

’ -1 7 -1 :
(Z z—g) H = (Z K;) K; (24a)
j=1 j=1

HW=0 (24b)
Proof
See Appendix A.1. O

In the limit, by applying Lemma 4.1 to (14),

q 174
I*= (Z H) (Z HP) cry! @5)
i=1 =1
Note that (25) does not require the solution to the two-point boundary value problem, (12)
and (15), but just the solution to the Riccati equation (13) which can be obtained independently
of L. By using the asymptotic expansion of P, in Reference [12], it can be shown that HP,
remains finite in the limit even though P; goes to infinity. Therefore, the limiting filter gain 25)
remains finite. Lemma 4.2 shows that (25) minimizes the cost criterion. Therefore, 25) is

- equivalent to (14) in the limit. Lemma 4.2 also shows that (9) is the optimal projector in the
limit.

Lemma 4.2

In the limit, the cost criterion associated with (25) is zero.

Proof
See Appendix A.2. 0

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:675-696
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Remark 2
For the single-fault filter, the filter gain (20) goes to infinity in the limit and there exists a

reduced-order filter [12]. For the multiple-fault filter, however, the limiting filter gain (25)
remains finite.

Theorem 4.3 shows that 97 - -.93} are (4 - LC)-invariant where L is in {25). Therefore, the
filter becomes equivalent to the RDD filter in the limit. Corollary 4.4 shows that 7 --- 7, are

(4 — LC)-invariant where L is in (25). Therefore, the filter also becomes equivalent to the BID
filter in the limit.

Theorem 4.3 .
In the limit, 7, --- 9, are (4 — LC)-invariant where L is in (25).

Proof
See Appendix A.3. 1

Corollary 44
In the limit, 7 --- 7, are (4 — LC)-invariant where L is in (25).

Proof
See Appendix A.4. O

Remark 3

For time-varying systems, the minimal (C, 4)-unobservability subspace cannot be determined by
(21) because the concept of invariant zero is for time-invariant systems only. However, by letting
; = KerI1; which is given in Appendix A.3, it can be shown that KerIT; is included in the
unobservable subspace of (B,C,A — LC) where L is in (25) and H, is given in (9) [11,12].
Furthermore, Ker IT; is equivalent to the unobservable subspace of (H;C,4 — LC) when there is
no complementary subspace. Then, all the lemmas, theorem and corollary in this section can be
shown similarly for time-varying systems. Therefore, the filter extends the RDD and BID filter
to the time-varying case.

Remark 4

In the limit, by using Lemma 4.2 and that tr(&CP; C”‘"H) is finite {12], the robust multiple-fault
detection filter problem satisfies

Eh@h®O" _
Eh(Dh(0)"]

for i =1-.-q. This implies that the transmissions from the associated nuisance faults to their
associated projected residuals are zero.

4.3. Condition on fault detection and identification

In this section, three conditions to ensure that the faults can be detected and identified are
assumed. First, CZ ---CZ, are independent. If they are not independent, different faults will
produce the same non-zero projected residuals and therefore the faults cannot be identified. This
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is equivalent to the output separability condition in Reference [3]. Note that CZ; - -- CT, are
independent if and only if C#7 --- C#, are independent.

The other two conditions are assumed for time-invariant systems only. The first condition is
that the invariant zeros of (C, 4, [F, - - - F]) are either the invariant zeros of (CAE),i=1---q,
or in the left-half plane. This is from the mutually detectable condition for the RDD filter
because the robust multiple-fault detection filter becomes equivalent to the RDD filter in the
limit. Fi - - - F; are mutually detectable if (C, 4, [F - -- F,;]) does not have more invariant zeros than
(C,4,F), i=1---q [3]. If F; ---F, are not mutually detectable, the extra invariant zeros will
become part of the eigenvalues of the detection filter. If the extra invariant zeros are in the right-
half plane, no stable detection filter can be found to isolate these g faults. A numerical example
is given in Section 6.2.3. The second condition is that (C, 4, F}) cannot have invariant zeros at the

origin if y; needs to be detected [12]. This ensures a non-zero projected residual in steady state
when its associated target fault occurs.

5. MINIMIZATION WITH RESPECT TO H; --- H,
In this section, the robust multiple-fault detection filter problem is solved with & - -- H, derived

from solving the minimization problem instead of defined a priori by (9). From (11), by using
H; = p,p?, the minimization problem becomes

4 5
/ tr{Zp?C(ﬁHa)c"“f at
]

i=1

min_
LA h—§

subject to (12) and p! p; = I,,, where m; is the rank of (9). By using matrix Lagrange multipliers
K; and Z; to form the variational Hamiltonian, the first-order necessary conditions imply
that the optimal solution for L and the dynamics of K; are still (14) and (15), respectively.
Further, from the first-order necessary condition C(W; + P)CTp; = p,Z;, the optimal solution
for H: is

Bi=loy pa = pimllons Pz = Pyl 26)

where p;;---p; m are the eigenvectors of C(W + P)CT Aassoc{ated with the smallest m;
eigenvalues. To obtain the optimal solutions for L and H;---H,, (12), (14), (15) and (26)
have to be solved simultaneously. For the infinite-time case, (14), (17), (19) and (26) have to be
solved simultaneously. In Section 4.2, it is shown that (9) minimizes the cost criterion in the
limit. Therefore, (26) becomes equivalent to (9) in the limit. Note that, for time-invariant
systems, (9) is the projector used by the RDD filter [3].

6. EXAMPLE

In this section, two numerical examples are used to demonstrate the robust multiple-fault
detection filter. In Section 6.1, the filters are derived in the forms of unknown input observer,
BID filter and RDD filter, respectively. In Section 6.2, the filters are derived to show that the
filter has behaviours similar to the RDD and BJD filters.
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6.1. Example I

In this section, a linear time-invariant system for the F16XL aircraft [6] is used to demonstrate
the performance of the robust multiple-fault detection filter. The system has four states
(longitudinal velocity x,, normal velocity x,, pitch rate x, and pitch angle x;), one control input
(elevon deflection angle u;), four measurements (longitudinal velocity y,, normal velocity y,,

pitch rate y, and pitch angle yp) and one disturbance input (wind gust uy,). The system matrices
are

—0.0674 00430 —0.8886 —0.5587 ~0.1672
00205 —1.4666 16.5800 —0.0299 ~1.5179
01377 —16788 -0e819 o |° °T |—omaz]
0 0 1 0 0
0.0430
~1.4666
= _ems| ©77
0

Three faults in pitch angle sensor yy, elevon deflector u5 and wind gust u,, are considered. In

this example, the wind gust is considered as a fault instead of a process noise. The fault
directions are [4]

0 -0.5587 —~0.1672 0.0430

0 —0.0299 —-1.5179 —1.4666
}?9 = s .F:{i = 3 ng =

0 0 —9.7842 —1.6788

1 0 0 0

In Section 6.1.1, the filters are derived in the form of unknown input observer where s = 1. In
Section 6.1.2, the filter is derived in the form of the BID filter where s = 3. In Section 6.1.3, the
filter is derived in the form of the RDD filter where s = 2. In Section 6.1.4, the filter is derived to

show that the sensitivity of the projected residuals to their associated target faults can be
enhanced.

6.1.1. Unknown input observer

In this section, the filters are derived in the form of unknown input observer where s = 1. Since
each filter can detect only one fault, three filters are needed. Let Fi = Fj, I = Fyand F = Fyg.
The weightings are chosen as y; =9, =7, =10"%, 0, =0.1], O, =03 =1 and ¥V =1. The
steady-state solutions of (13) are obtained for i = 1---3, respectively. Then, three single-fault
filters (3) are obtained by (20). Figure 1 shows the frequency response from each fault to the
projected residual Hr (4) of each filter. Note that each filter has only one projected residual B
for detecting the fault F. The projectors H| - -- H are defined by (9). The dashed line represents
the pitch angle sensor fault. The dashdot line represents the elevon deflector fault. The solid line
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Figure 1. Frequency response of the three single-fault filters when s = 1.

represents the wind gust fault. This example shows that the projected residual of each filter is
only sensitive to its associated target fault, but not to its associated nuisance fault.

6.1.2. Beard-Jones detection filter

In this section, the filter is derived in the form of the BID filter where s = 3. Since the filter can
detect all three faults, only one filter is needed. The filter gain, satisfying (17), (18) and (19), is
obtained by using the gradient method to solve (16) numerically with H, - - - H; defined a priori
by ). Fxgure 2 shows the frequency response from each fault to the three projected residuals

Hr--- Har () of the filter (3). This example shows that one multiple-fault filter works as well as
three single-fault filters.

6.1.3. Restricted diagonal detection filter

Since the wind gust is a disturbance, it does not need to be detected, but only needs to be
blocked. Therefore, in this section, the filter is derived in the form of the RDD filter where s = 2.
The filter gain, satisfying (17), (18) and (19), is obtained by using the gradient method to solve
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Figure 2. Frequency response of the multiple-fault filter when 5 = 3.

(16) numerically with #; and H, defined a priori by (9). In Figure 3, the left and middle figures
show the frequency response from each fault to the two projected residuals, Hr and Hyr @), of
the filter (3). Note that the filter has only two projected residuals because only two faults, F; and
B, are detected. These two figures show that the pitch angle sensor fault and elevon deflector
fault can still be detected and identified even though s = 2. To compare with the filter derived in
the previous example where s = 3, the right figure in Figure 3 shows the frequency response
from each fault to the projected residual A3 used for detecting the wind gust fault in previous
example. This figure shows that the wind gust fault can no longer be identified from the other
two faults. This example shows that the multiple-fault filter still works well after relaxing the
constraint on detecting the wind gust fault.

6.1.4. Enhancement of associated target foult sensitivity

In this section, another filter in the form of the RDD filter where s = 2 is derived to show that
the sensitivity of the projected residuals to their associated target fauits can be enhanced. The
weightings are the same except Oy = 0.647 and @, = 4.73. In Figure 4, the performance of this
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Figure 3. Frequency response of the multiple-fault filter when s = 2.

filter is compared to the filter derived in the previous example. The left figure shows the
frequency response from the pitch angle sensor fault to its associated projected residuals when
@1 = 0.17 and 0.641, respectively. The right figure shows the frequendy response from the elevon
deflector fault to its associated projected residuals when Q; = 1 and 4.73, respectively. This
example shows that the sensitivity of the projected residuals to their associated target faults can
be enhanced by increasing the weightings of the associated target faults.

6.2. Example 2

In this section, three numerical examples are used to show that the robust multiple-
fault detection filter has behaviours similar to the RDD and BID filters. In Section 6.2.1, the
filter is derived when the fault has an invariant zero in the right-half plane. In Section 6.2.2,
the filter is derived when the fault has an invariant zero in the left-half plane. In Section 6.2.3,
the filter is derived when the faults are not mutually detectable.
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Figure 4. Frequency response of the multiple-fault filter when s = 2.

6.2.1. Right-half-plane invariant zero.
Consider the time-invariant system from Reference [4],

0.3 4 1 -3
01090 ‘
A=11 2 3}, C= , F=1-05], K=
0 01
0 2 5 0.5 0

There is no process noise. (C, 4, /) has an invariant zero at 3 and the invariant zero direction is
v=[10 O]T, By using (21), 77 =ImF, and 73 = Im[F; v]. Since 77 @ 9, = %, there is no
complementary subspace.

A multiple-fault filter is derived similarly as before to detect and identify these two faults. The
weightings are chosen as y; =y, = 107, 0| = 0, = 0.25 and V = I. The eigenvectors of the
filter are very close to | and 7, similar to the BID filter. Since the invariant zero direction is
approximately included in the invariant subspace of F, generated by the filter, none of the
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eigenvalues of the filter is close to the invariant zero at 3 {3}'. The eigenvalues of the filter are
—0.5865, —5.3789 and —7.1102.

6.2.2. Left-half-plane invariant zero
Consider the same time-invariant system from Section 6.2.1 except / =[3 1 0JT. (C.AF)
has an invariant zero at —3 and the invariant zero direction is v=[1 0 0]T. By using
21), Z1=ImF and 7; =Im[Fv]. Since 7, ® J> =%, there is no complementary
subspace.

A multiple-fault filter is derived with the same weightings as in Section 6.2.1. The eigenvectors
of the filter are very close to ; and 7, similar to the BID filter. Since the invariant zero
direction is approximately included in the invariant subspace of F, generated by the filter, none

of the eigenvalues of the filter is close to the invariant zero at —3 [3]. The eigenvalues of the filter
are —0.5865, —5.3789 and —7.1102.

Remark 5

For the single-fault filter [12], the invariant zero directions associated with the feft-half-plane
invariant zeros are not included in the invariant’subspace and part of the eigenvalues of the filter
are very close to the invariant zeros. Although the invariant zero directions associated with the
right-half-plane invariant zeros are included in the invariant subspace, part of the eigenvalues of
the filter are very close to the mirror images of the invariant zeros. To avoid this situation, the
fault directions have to be modified. However, as demonstrated by the numerical examples in
Sections 6.2.1 and 6.2.2, the multiple-fault filter automatically includes the invariant zero

directions in the invariant subspaces and none of the eigenvalues of the filter is close to the
invariant zeros or their mirror images. '

6.2.3. Non-mutually detectable faults

Consider the same time-invariant system from Section 6.2.1 except F; =[5 1 1]T. F; and B are
not mutually detectable because (C, 4, [F; F>]) has an invariant zero at —1.5 while (C,A,F) and
(C,4,F) do not have any invariant zero. By using (21), 7; = ImF;, and 45 = ImF,. Since
1 @ 73 < Z, there is a complementary subspace. '

A multiple-fault filter is derived with the same weightings as in Section 6.2.1. Two of the
eigenvectors of the filter are very close to 7 and ; similar to the BID filter. Since F; and F are
not mutually detectable, one of the eigenvalues of the filter is very close to the extra invariant
zero at —1.5 [3]. The eigenvalues of the filter are —1.5008, —5.7648 and —6.8185.

Remark 6

A multiple-fault filter is also derived for two non-mutually detectable faults where the
extra invariant zero is in the right-half plane. Although a stable filter can be derived numerically
by minimizing the cost criterion, the minimal cost is large and the filter cannot isolate the
faults. This is consistent with the BJD filter in that the extra invariant zero will become
one of the eigenvalues of the filter if the filter generates the invariant subspaces to isolate
the faults [3]. Therefore, it is impossible to obtain a stable multiple-fault filter that can

isolate the faults. However, two single-fault filters can be used to monitor these two
faults.
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7. CONCLUSION

Different from other design algorithms for the RDD or BJD filter which explicitly force the
geometric structure by using eigenstructure assignment or geometric theory, the robust multiple-
fault detection filter is derived from solving a stochastic minimization problem and only in the
limit, is the geometric structure of the RDD filter recovered and the faults are completely
isolated. When it is not in the limit, the filter only isolates the faults within approximate
unobservable subspaces. This new feature allows the filter to be potentially more robust because
of the additional design freedom which allows different degrees of fault isolation. Furthermore,
a mechanism that enhances the sensitivity of the projected residuals to their associated target
faults is provided. Finally, the filter can be applied to time-varying systems. Although the
process of deriving the filter gain requires the solution to a two-point boundary value problem,
the filter gain computation can be done off-line so that the filter implementation is as
straightforward as the RDD filter. However, further research is needed in developing a
numerical algorithm to solve the optimization problem more efficiently. ’

APPENDIX A

A.l. Proof of Lemma 4.1
To show (24a), for i = 1, by using Lemma A.1 in Appendix A.5

-1 -1
g g
r (Z H}) HT = (E rTer) o T
j=i

j=1
A o o717 i
' H 0 I 0
|9 - 0 0o ol lo o
0 0 H
q -1 q -1
r (E Kj) Kll“:( I'g,;r| 'k
j= j=1
' B o 017" )
K, 0 I 0
10 0 o o loo
0 0 K,

Therefore, ( ;f:‘ I{;)'IHI =( §=1 K,-)"Kg, It can be shown similarly for the cases where
i=2.--q. This completes the proof for (24a).
To show (24b), by substituting (24a) into (14)

5 -lr s
*= (Z H) {Z H(P, + W.f)} ¢y (A1)

i=1 =1

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:675—696




MULTIPLE-FAULT DETECTION FILTER 693

By multiplying (12) by H; from the left and right, subst:tutmg (A1) and using Lemma A.2 in
Appendix A.5

H-Wi+ A ~PRCTV'COW + W4 - BCTV'C)T — W CTV-'CWjH; =

Note that, from (20), 4 — P.CTV~!C is the closed-loop 4 matrix of the filter when only the fault
F is detected Then

Wi = (4~ PC'V'OW; + Wid — RCTV'C) — wCTv-'cw; + 1,17

where Im 7; = J; because KerH; = J,. Since ; is - PCT V-1C)-invariant (12, the
controllable subspace of (4 — RCTV~'C, ;) is 7; and Im W; = ;. Since Ker H; = 9;, H;W, =
0. This completes the proof for (24b).

A.2. Proof of Lemma 4.2

By multiplying (12) by H; from the left and right, substituting (25) and using Lemma A.2 in
Appendix A.5

H~W;+(d —RCTV'\OW; + W4 — RCTV ' O)T1H, = 0
Then ,
=4 - PCTV'OW; + W4 — PCTVv-'O) + 11T

where Im 7; = 7; because KerH; = J;. Since i is (4—PBCTV-'C)-invariant [12], the
controllable subspace of (4—PBCT P’“C 1)) is ;. Then, the image of the controllability
grammian W, is 7;. Since Ker B = CJ; from (9), B,.CW,CTH; = 0. Therefore

1 g . N
J* = f tr 'CW,CTH; | dt=0
e ) (; HCW,C B,
A.3. Proof of Theorem 4.3

Since P, goes to infinity in the limit, II; £ P! has a null space [12] and

—IT; =LA + ATTL; + 1; G- F;-Qfﬁ'f ~FO:FT + ngwsf‘;) I, - CTv-Ic (A2)

When the associated nuisance fault occurs, the dynamic equation of the error without process
and sensor noises can be written as

;¢ = I1;(4 — LC)e + IL;Ffi;
By adding IT;e to both sides and substituting (A2)

d 1aaa
e = ~ [ﬂf}feC +A4"T; + 10, (y—F O] ~ FQF + BWQB’B£>
H

x TI; — cr;f—lc]e +ILE, (A3)

Let IT; = lim,_,o I1. Since Ker IT; = J; [12]

- ﬁf: [ =j
(3 m) {1 = o~
=1 0,

i#j
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which can be shown similarly to Lemma A.2 in Appendix A.5. In the limit, by substituting (25)
and (A4) into (A3)
5 (i) = - [A’*" +11; (yi FiQ.F] - FOFT + BWQWBE,)] Tie + iy (A5)

If the error mltlaliy lies in Ker IT;, (AS) implies that the error will never leave Ker IT; because
l'I F; = 0[12]. Therefore, Ker I; is (4 — LC)-invariant where L is in (25). Since Ker IT; = ;5 [12],
9; is (4 — LC)-invariant where L is in (25).

A.4. Proof of Corollary 4.4

When s=gq, 7;= g1 n n),;nﬁ'ﬂn nf From Theorem 43, J;-- ff‘; are
{4 — LC)-invariant where}: is in {25). Therefore, 77 - - y are (4 — LC)-invariant where L is in (25).

A.5. Lemmas
Lemma A.1
There exists a state transformation T
Zi 0 ¢
17 - Z1=T|o " o
0 0 Z

where Z;, i = 1--- g, are any invertible matrices with dimension equivalent to dim 4; such that
K;---K, are in the form of

- 0 0 O
K 0 _ . 0 0
I''kIr = , T"T(T=10 K, 0| - TIKI= .
L0 o0 0 K,
0 0 0O
in the limit where K --- K, are invertible and H, - -- H, are in the form of
_ [0 0 0
: H 0 _ 0 0
I"Hr=| , I"TlbTr=10 H, 0| - ITHI= _
0 0 0 H,
‘ [0 0 0

where Hj --- H, are invertible.

Proof
Since Ker B, = CJ; from (9) and J; is (4 — LC)-invariant in the limit by the assumption, the

unobservable subspace of (B;C,4 — LC) is 9;. Then, from the Lyapunov equation (15), the null
space of the observability grammian X; is ; in the limit. For i = 1

. 0 0 0
KerKy=9,=T|, |=KT|, |=0=T7KT"| _ | =0
Z! Z§ gl
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where Z; = diag(Z,- - - Z,). Since 2, is invertible and T7K,T is symmetric

K 0
KT = { 0’ }

0
It can be shown similarly for K, ---K, and H, --- H,. O
Lemma A.1
-1 .
H(fj Hi) = {H 7
= 0, i#j
Proof

Fori=j=1, by using Lemma A.2,

g

-1 -1
I'’H, (zq: H;c) HTI =TTHT) (Z r?ng) TTHT)

k=1 k=1
- -1
A 0 o )
(H; 0] ‘ H 0 I 0][H ©
Lo o % Lo o/ foollo o
0 0 H,
o
=" T|=rmr
_0 0_

Therefore, H(3_7_, Hi)'H, = H,. It can be shown similarly for other cases where i = j. For
i=land j=2

-1 -1
I''H (Zg: H;;) H,T =(T"HI) (i FTH;CT> IT"HT)
k=1

k=1

= ~1
Hy 0O 0 0 0 ¢

i a0

Lo o 0 2
o o a] LO O
0 0 0

Io )

= {)HEG=G

00
0 0 0

Therefore, Hy(3°¢_, Hy)™'H, = 0. It can be shown similarly for other cases where i % . O
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Abstract

A fault detection and identification algorithm, called optimal stochastic fault detection filter, is determined. The objective of the filter
is to detect a single fault, called the target fault, and block other faults, called the nuisance faults, in the presence of the process and
sensor noises. The filter is derived by maximizing the transmission from the target fault to the pro}ected output error while minimizing the
transmission from the nuisance faults. Therefore, the residual is affected primarily by the target fault and minimally by the nuisance faults.
The transmission from the process and sensor noises is alse minimized so that the filter is robust with respect to these disturbances. It is
shown that the filter recovers the geometric structure of the unknown input observer in the limit where the weighting on the nuisance fault
transmission goes to infinity. Further, the asymptotic behavior of the filter near the limit is determined by using a perturbation method.

Filter designs can be obtained for both time-invariant and time-varying systems.

© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Fault detection and identification; Analytical redundancy; Unknown input observer; Robust fault detection filter; Time-varying system;

Perturbation theory

1. Introduction

Any system under automatic centrol demands a high
degree of system reliability. This requires a health moni-
toring system capable of detecting any plant, actuator and
sensor faults as they occur and identifying the faulty com-
ponents. One approach, analytical redundancy which re-
duces the need for hardware redundancy, uses the modeled
dynamic relationship between system inputs and measured
system outputs to form a residual process which can be used
for detecting and identifying faults. A popular approach
to analytical redundancy is the unknown input observer
{Chen & Speyer, 2000; Chung & Speyer, 1998; Frank,
1990; Massoumnia, Verghese, & Willsky, 1989; Patton &
Chen, 1992) which divides the faults into two groups: a
single target fault and possibly several nuisance faults. The
nuisance faults are placed in an invariant subspace which
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is unobservable to the residual. Therefore, the residual is
only sensitive to the target fault, but not to the nuisance
faults.

In this paper, a design algorithm, called optimal stochas-
tic fault detection filter, is determined for the unknown input
observer. The filter is derived by maximizing the transmis-
sion from the target fault while minimizing the transmission
from the nuisance faults. The transmission is defined on the
projected output error by using a projector to be derived from
solving the optimization problem. Therefore, the residual is
affected primarily by the target fault and minimally by the
nuisance faults. The transmission from the process and sen-
sor noises is also minimized so that the filter is robust with
respect to these disturbances. Since certain types of model
uncertainties can be modeled as additive noises (Patton &
Chen, 1992; Douglas, Chen & Speyer, 1997) the filter can
also be made robust to these model uncertainties. 4

In the limit where the weighting on the nuisance fault
fransmission goes to infinity, the filter blocks the nuisance
faults completely. It is shown that the filter places the nui-
sance faults into a minimal {C, 4 )-unobservability subspace
for time-invariant systems and a similar invariant subspace
for time-varying systems. Therefore, the filter recovers
the geometric structure of the unknown input observer in
the limit and extends the unknown input observer to the
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time-varying case similar to Chen and Speyer (2000) and
Chung and Speyer (1998). These limiting results are impor-
tant in ensuring that both fault detection and identification
can occur. For time-invariant systems, the nuisance fault
directions are generalized to prevent the invariant zeros of
the nuisance faults or their mirror images from becoming
part of the eigenvalues of the filter.

The behavior of the filter near and in the limit can be
determined by using a perturbation method. In particular,
the perturbation method captures the asymptotic behavior of
the Riccati equation that defines the filter gain and general-
izes the result of Kwakernaak and Sivan {1972). Note that

_ Chen and Speyer (2000) and Chung and Speyer (1998) use

the Goh transformation in singular optimal control theory
{Bell & Jacobson, 1975; Moylan & Moore, 1971) to deter-
mine the filter in the limit. Although the Goh transforma-
tion cannot determine the asymptotic behavior of the filter
near the limit, it is shown that it produces a limiting Riccati
equation which is the same as that determined from the per-
turbation method. Finally, the asymptotic approximation to
the ill-conditioned Riccati equation near the limit provides
a robust numerical algorithm by eliminating the large coef-
ficient in the Riccati equation.

The problem is formulated in Section 2 and its solution
is derived in Section 3. In Section 4, the limiting properties
of the filter are determined. In Section 5, the limiting and
asymptotic behaviors of the filter are determined by using
the perturbation method. In Section 6, numerical examples
are given.

2. Problem formulation

Consider a linear time-varying, uniformly observable
system,

X =Ax + Bu + B,w, (la)

y=C+v, (1b)

where u is the control input, y is the measurement, w is
the process noise and v is the sensor noise. Following the
development in (White & Speyer, 1987; Chung & Speyer,
1998), any plant, actuator and sensor faults can be modeled
as additive terms in the state equation (1a). Therefore, 2
linear system with g faults can be modeled by

g
E=Ax+Bu+Bow+ Y Fifl, (22)
i=1

y=Cx+v. (2b)

The fault magnitudes [I; are unknown and arbitrary func-
tions of time that are zero when there is no fault. The fault
directions F; are maps that are apriori known. Assume the
F’s are monic so that [I; # 0 implies F;fi; # 0. Since the
optimal stochastic fault detection filter is designed to detect
only one fault and block other faults, let y; = fi; be the target

faultand pi =[] - - &, fif,, - - - A1]" be the nuisance fault.
Then, (2) can be rewritten as (Massoumnia et al., 1989)

X=Ax +B,,u¥§—wa + Fipy + Fap, (3a)

y=Crx+, ' (3b)

where F; =Fg ansz = {Fl -"1,5,'_1 Fg+1 * Fq]
The objective of the optimal stochastic fault detection
filter problem is to find a filter gain L for the linear observer,

# =A% +Bu+L(y — C%) 4)
and a projector A for the residual,
r=H(y-c2) )

such that the residual is affected primarily by the target fault
w1 and minimally by the nuisance fault y,, process noise
w, sensor noise v and initial condition error x(fy) — £(¢).
it is assumed that y;, g, w and v are zero mean, white
Gaussian noises with power spectral densities 0, O, O
and ¥, respectively, and the initial state x(fy) is a random
vector with variance Py. It is also assumed that yy, p, w
and v are uncorrelated with each other and with x(¢y).

By using (3) and (4), the dynamic equation of the error,
e=x—%,1is

é=(4A—-LC)e+ Fiyy + Foup + B,w— Lo. ©)
Then, the error can be written as

e(t) = D(t,to)e(to)

1t
+ [ N Fa + Fao 4 Bow—Loyae ()
to
subject to
& 8t1) = (4~ LOYL 1), ®)

where ®(ty,%)) = I. The residual (5) can be written as » =
H(Ce+v).

* An optimal stochastic fault detection filter problem for-
mulated with a cost criterion based on the residual is un-
usable from the statistical viewpoint since the variance of
the residual generates a §-function due to the sensor noise.
Therefore, the cost criterion will be based on the projected

output error H Ce. In order to determine the cost criterion,
define

i

h(t) & AC [ B(t,7)F 1y d, (9a)
f
H

ha(t) & AC f B, 1) Ptz d, (9b)
)

()& AC [@(:, to)e(to)

4
+ f ¢(t,t)(wa—Lv}dt]. (9¢)

i
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From (7), E[h;(¢£)h1(¢)"] represents the transmission from
w1 to HCe, E[hy(2)ha(¢)T] represents the transmission from
2 to HCe and E[h;(t)h3(¢)"] represents the transmission
from w, v and e(f) to H Ce where E[ ] is the expectation
operator. Note that e(#) is a zero mean random vector with
variance Py if £(¢) = E[x(#%)].

The optimal stochastic fault detection filter problem is to
find the filter gain L and the projector A which minimize
the cost criterion,

J=tr {é Elha(t)ha(t)™] + Elhs (1hs(0)"]

—E{fzgr)kg(r}'f]}, (10)

where £ is the current time and y is a positive scalar. Making
y small places a large weighting on reducing the nuisance
fault transmission. The trace operator forms a scalar cost
criterion of the matrix output error variance. Note that the
power spectral densities O; and (; are considered as design
parameters. Since no assumption is made on the fault mag-
nitudes, their white noise representation is a convenience.
When (; increases, the transmission from the target fault
increases. When (; increases, the transmission from the nui-
sance fault decreases. However, the power spectral densities
O, and ¥, and the variance P; can have physical values.
When Q,, ¥ and Py increase, the transmission from the pro-

~ cess noise, sensor noise and initial condition error decreases,
respectively.

- Since the effect of the process and sensor noises on
the residual is explicitly minimized, the filter is robust
with respect to these disturbances. Certain types of model
uncertainties can also be modeled as additive noises
{Patton & Chen, 1992; Douglas et al, 1997). Therefore,
the filter can be made robust to these model uncertainties.
In Section 4, it is shown that the filter recovers the geomet-
ric structure of the unknown input observer in the limit as
9 — 0 and the nuisance fault is completely blocked. When
it is not at the limit, the filter is an approximate unknown
input observer and the nuisance fault is partially blocked.
Since the approximate unknown input observer (Chung &
Speyer, 1998; Chen & Speyer, 2000) has the additional de-
sign freedom to determine how much of the nuisance fault
is to be blocked, it is potentially more robust than the clas-
sical unknown input observer (Frank, 1990; Massoumnia
et al., 1989; Patton & Chen, 1992).

3. Solution

In this section, the minimization problem given by (10)
is solved. By using (9), the cost criterion rewritten as

4
X 1
J=tr {HC [ / &(t,7) (LVLT + ;FzQng
o

_FIQEFE‘ +Bwa8;rv) @(Isf)T de

+9(1,15)Po &t :g)?] ch%}

is to be minimized with respect to L and H subject to 8)
and that H is a projector. By adding the zero term

tr {é*c [@(r, HP(1)D(2,1)T — B(2,10)P(£6)D(t, 1)T

- f t -%{@(z, T)P(2)D(t,1)] dt] C?f?}

&

to J and using (8), the minimization problem can be rewrit-
ten as

¢
min tr [ﬁfc / &(t,t)L — PCTV 1YV (L - PCTy—1)T
LH o .
&(t,7)T drCTH +§cp{r)cT§} (11)

subject to (8) and that A is a projector where

P=AP+PA" - PC'V~'CP + %FZQZFg

— FiQiF] + B, Q. B, (12)
and P(fp} = Py. By inspection, the optimal filter gain is
L*=pC"y 1, (13)

Since H is a projector, it can be written as H=ppT where
dim p =rank H and p"p =1I. By applying (11) to (13) and
substituting # = pp", the minimization problem reduces to

min tr{p" CP()C" p]

subject to p¥p=1. By using a matrix Lagrange multiplier A
to adjoin the constraint to the cost criterion, the first-order
necessary condition is obtained as Athans (1968)

CP(t)CTp = pi.

Let A; = A3 = -+~ 2 Ay be the eigenvalues of CP(¢#)CT and
P1,P2,--.,Pm be the associated eigenvectors. The solution
for the optimal p depends on the rank of H. If the rank
is chosen as one, the optimal p is p,, and the optimal pro-
jector is .

B = pmp';. {14)

The minimal cost associated with (14) is 4,,. Note that the
null space of (14) is Im[py p2-- - pm—1] because (14) can
be written as H* =1 —[p1 pz-+ pm—1] [p1 P2+ pm—1]"-
In Sections 4 and 5, it is shown that CP(¢)CT has p, infi-
nite eigenvalues in the limit as y — 0 and p, large eigenval-
ues near the limit when y is small where p, =dim F;. Since
the remaining m — p, eigenvalues are very small compared
to the p, large eigenvalues when 7 is small, the rank of H
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can be chosen as m — p, and the optimal projector is

}:I* = [pm Pm—1
[pm Pm—1

?@2*13
Pppst]’. (15)

The minimal cost associated with (15) is Ei”: +1 4 The
null space of (15) is Im[p, p2 -+ pp,]. Note that both (14)
and (15) are optimal projectors depending on the rank cho-
sen. In Sections 4 and 5, it is shown that Im[p; p; --- p 221
contains the nuisance fault completely in the limit and par-
tially near the limit. Thus, the null space of H* only needs
to include Im[p; p» --- pp,] in order to block the nuisance
fault. Furthermore, (15) allows at least as much of the target
fault to pass through as (14) because Im[p; p; --- p ] €
Im[p; p2 -+ pm—1]. Therefore, (15) is a better choice than
(14). In Section 4, it is shown that (15) becomes equivalent
to the projector used by the unknown input observer in the
limit.

Wr=[f1Af1--- 4% f

Remark 1. To implément the optimal stochastic fault de-
tection filter, the filter gain (13) and the projector (15) are
constructed continuously with respect to time because in the
cost criterion, ¢ is the current time.

Remark 2. When Q; = 0, the Riccati matrix P is posi-
tive definite. When (; increases, P may become indefinite
(Chen, 2000). If QO continues to increase, P may have a
finite escape time and goes to —oo. This can be shown by
formulating a linear quadratic regulator problem as the dual

W =[bo by < byg,

problem of the optimal stochastic fault detection filter prob-
lem and using the result in Speyer (1986). This can be in-
terpreted as an attempt to make the residual sensitive to the
target fault. If O, is too large, the target fault may destabi-
lize the filter. Therefore, O; has to be chosen small enough
to avoid the finite escape time.

4. Limiting case

In this section, the limiting properties of the optimal
stochastic fault detection filter are determined when y — 0.
1t is shown that the filter places the nuisance fault into an in-
variant subspace. For time-invariant systems, this invariant
subspace is the minimal (C, 4)-unobservability subspace of
F;. Therefore, the filter becomes equivalent to the unknown
input observer in the limit. For time-varying systems, there
exists a similar invariant subspace. Therefore, the filter ex-
tends the unknown input observer to the time-varying case.

S2Afa -+

&2,&62,1 bz,é: .o

In Section 4.1, the geometric structure of the unknown in-
put observer is given (Massoumnia et al., 1989; Chung
& Speyer, 1998). In Section 4.2, the limiting properties of
the filter are determined. In Section 4.3, the nuisance fault
directions are generalized for time-invariant systems to pre-
vent the invariant zeros of the nuisance fault or their mirror
images from becoming part of the eigenvalues of the filter.
In Section 4.4, the conditions to ensure that the target fault
can be detected are discussed.

4.1. Geometric structure of unknown input observer

The unknown input observer places the nuisance fault
into the invariant subspace 7, which is unobservable to the
residual (Massoumnia et al., 1989). 7, =% ,@® ¥, is called
the minimal (C,4)-unobservability subspace or the detec-
tion space of F, (Massoumnia, 1986). % is the minimal
(C, A)-invariant subspace of F, given by

A% fy oo fp Afpy oo AP0 f 0, (16)

where f; is the ith column of F, §; is the small-
est non-negative integer such that CA%f; # 0 and
p2 = dimF,. ¥ is the subspace spanned by the in-
variant zero directions of (C,4,F;). Note that 7, is the
unobservable subspace of (HC,4 — - LC) where L is the
unknown input observer gain and H is a projector with
ker H = Im[CA® f; CA%f,--.CA% fp] (Massoumnia
et al., 1989). Therefore, the nuisance fault is anebscrvable
to the residual that uses H as the projector.

For time-varying systems, the minimal (C, 4)-invariant
subspace of F, is (Chung & Speyer, 1998)
: ép;,ﬁ g?p;,l tt 5;}2,&;,2}- a7
The vectors by ;, j=0,1 - - - §;, are obtained from the iteratien
defined by the Goh transformation, i.e., b; j=4b; ; —1—bi ;s
with b;o = f; where f; is the ith column of F, {Beii &
Jacobson, 1975; Moylan & Moore, 1971). §; is the smallest
non-negative integer such that Cb; 5, # 0. For time-varying
systems, the minimal (C, 4)-unobservability subspace can-
not be determined because the concept of invariant zero is
for time-invariant systems only. The time-varying extension

of H is ker H = Im[Cb, & Cbas, -+ Chp,s, 1 (Chung &
Speyer, 1998). ;

Remark 3. Egs. (16) and (17) produce the correct invariant
subspaces only when rank C#", = p,. If rank C#", < p,,a
new basis for F, can be obtained such that rank C#", = } )
{Chen, 2000; Chen & Speyer, 2002).

4.2. Limiting property

In this section, it is assumed that the Riccati matrix P
is positive definite. From Remark 2, there always exists
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positive definite P for some Q. Then, P can be written as
n
P=3 ¥ '),
i=1

where 1, is the ith eigenvalue of P and j; is the associated
eigenvector. In the limit as y — 0, P goes to infinity because
of the term (1/y)F>Q,F; in (12) which indicates that some
;s go to zero. Define

n
map=%"Lpp.
' i=1

Then, P goes to infinity in the limit along the null space of
I1. By using
d d
——P YHY=p =P} P!
ét( ) ( dr )
and (12),

. 1
H=TA+ AT+ 1 (;FZQEF;" —FQFT

+BWQWBE> n-ctvic, (1s)

where IT{fy) = Py !, Define

IT 2 limII.
y—0

In the limit, in order for (18) to have a solution,
iR, =0. o : (19)

This indicates that I7 has a null space which includes F,.
It turns out that ker I7 is the key to blocking the nuisance
fault. Theorem 4 shows that ker IT is a (C, 4)-invariant sub-
space. Therefore, the optimal stochastic fault detection filter
places the nuisance fault into an invariant subspace in the
limit. Theorem 5 shows that ker IT also includes the mini-
mal (C, 4)-invariant subspace of Fj.

Theorem 4. ker I is a (C,A)-invariant subspace.

Proof. When only the nuisance fault occurs, the dynamic
equation of the error (6) can be written as

Mé= (T4 - C'V™'Cle + HFyp,.
By adding ITe to both sides and using (18),

d 1
a—t-(ﬁ’e) = 1}4? +1II (;FZQEFE ~ FiO\F}

+ ngw,eg)} He + F3p,. (20)

In the limit, if the error initially lies in ker 11, (20) implies
that the error will never leave ker IT because of (19). There-
fore, ker I is a (C, A )-invariant subspace.

Theorem 5. ker IT includes the minimal (C,A)-invariant
subspace of F,.

Proof. Consider the time-varying case first where %, is
given by (17). From (19), ﬁ’bl,a =0 and }?51,0 = —ﬁblyo.
In the limit, by multiplying (18) by é}:a from the left and
b1 from the right, and using I7b; ¢ = 0,

éﬁFzQngf?bi,e =40 n

By using [Tb; o = —IIby 0, (18) and (21),
11byy = IT(Aby0 — b1 o) = CTV~1Chy g = 0.

From fIbl,l =0, it can be shown similarly that f.lb;,g =0.
By iterating this procedure, 1—7{51,3 big - b1s]=01
can be shown similarly that [[b;o b;y -+ b;5] =0 for
i=2,3,..., py. Therefore, [T% 5 =0. For the time-invariant
case, it can be shown similarly.

Whether ker IT includes the invariant zero directions of
(C, A, F,) for time-invariant systems is considered now. If
ker IT does not include the invariant zero directions, the
invariant zeros will become part of the filter eigenvalues
(ie., the eigenvalues of 4 — LC) (Massoumnia, 1986).
By using the result in Kwakernaak (1976), if there exist
left-half-plane invariant zeros, part of the filter eigenvalues
will be at the invariant zeros in the limit. If there exist
right-half-plane invariant zeros, part of the filter eigenval-
ues will be at the mirror images of the invariant zeros in
the limit. Therefore, ker IT includes the invariant zero di-
rections associated with the right-half-plane invariant zeros,
but not necessarily the invariant zero directions associated
with the left-half-plane invariant zeros. In Section 4.3, the
nuisance fault directions are generalized such that ker IT in-
cludes all the invariant zero directions. This generalization
prevents the invariant zeros or their mirror images from
becoming part of the filter eigenvalues. This is important
because the invariant zeros or their mirror images might
be ill-conditioned even though they are in the lefi-half
plane.

For time-invariant systems, ker [T D #°, from Theo-
rem 5 and ket [T D ¥, from the generalization of the
nuisance fault directions. Thus, ker [T 2 Z,. By using
the result in Chung and Speyer (1998) and Chen and
Speyer (2000), ker IT C 5. Therefore, ker IT is equiva-
lent to the minimal (C, 4)-unobservability subspace of F;
and the optimal stochastic fault detection filter becomes
equivalent to the unknown input observer in the limit. For
time-varying systems, ker IT 2 #", from Theorem 5. By
using the result in Chen and Speyer (2000), ker IT is in
the unobservable subspace of (HC,4 — LC). Therefore,
the optimal stochastic fault detection filter places the nui-
sance fault into a similar invariant subspace in the limit and
extends the unknown input observer to the time-varying
case.
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Remark 6. By using the optimal filter gain (13) and optimal

projector (15), the minimization problem (10) can be written
as

tr{Elha(6)ha()"1} + y te{Elhs()hs(1)"]}
te{E[A(£)h ()]}

= }‘ 1 + Eg——?yi-l ii N
te{E[Ai () (¢)T1}
In the limitas y — 0,

e {E{h()ha()"]}
tr{E[a: () (1)T]}

This implies that the nuisance fault transmission is zero in
the limit.

— 0

Remark 7. Since P goes to infinity in the limit along ker 1,
CPCT goes to infinity along Cker I1. For time-invariant
systems, Cker Il = Im[CA® fy CA% f5---CA%n f ). For

time-varying systems, C ker IT=Im[Ch, 5, Chy 5, - - - Cb Podpl

Then, CPCT has p, infinite eigenvalues in the limit and
their associated eigenvectors span Cker IT. Therefore, the
optimal projector (15) becomes equivalent to A, which is
used by the unknown input observer, in the limit.

4.3, Generalization of nuisance fault direction

The invariant zero of (C, 4, F;) is defined as z at which
zZI—-4 F
)
loses rank. The invariant zero direction v is formed from a
partitioning of the null space as

[zi—fi Fg] [v]
=0. (22)
104 0 v

From Section 4.2, when f;, a column vector of Fj,
has a left-half-plane invariant zero z;, kerI7 includes
Im[f; Af; -+ A% .1, but not Im v; where v; is the invariant
zero direction. Also, z; becomes one of the filter eigenval-
ues in the limit. If the nuisance fault direction f; is replaced
by v, z; will not become one of the filter eigenvalues.
Furthermore, since ker IT includes Im[v; Av; --- A%+ly,]
which is equivalent to Im[f; 4f; --- 4%f; v;] by using
(22), this generalization will still block the nuisance fault.
Note that ker I7 includes the invariant zero direction now.
If the invariant zero is in the right-half plane, this gener-
alization prevents the mirror image of the invariant zero
from becoming one of the filter eigenvalues in the limit.
If (C,A4,v;) has invariant zeros, the same procedure can be
repeated. If the invariant zero is associated with not just
one, but several column vectors of Fy, only one of these
vectors needs to be replaced by the invariant zero direction.

4.4. Condition on target fault detection

In this section, two conditions to ensure that the target
fault can be detected are assumed. First, F; and ker IT are
independent, i.e., F; Nker T =0. Otherwise, the target fault
will be difficult or impossible to detect because it will be
blocked from the residual along with the nuisance fault even
though the filter can still be derived by solving the minimiza-
tion problem. This condition is similar to but less restrictive
than the output separability condition in Massoumnia et al.
(1989) and Chung and Speyer (1998),i.c., C# | NCH =0
where %'; is the minimal (C, 4)-invariant subspace of F;
which can be obtained similarly by using (16) or (17).
The output separability condition is more restrictive be-
cause there is an invariant subspace formed for the target
fault.

For time-invariant systems, to further ensure a nonzero
residual in steady state when the target fault occurs,
(C,4,Fy) cannot have invariant zeros at the origin. When
only the target fault occurs, the dynamic equation of the

error (6) and the residual without the projector can be
written as

é=(A —LC)€+F”11,

r=Ce.

For a bias target fault, the residual is zero in steady state if
(C,4 — LC,F;) has an invariant zero at the origin (Chen,
1984). Since the filter gain L does not change the in-
variant zero, (C,4 — LC,Fy) has an invariant zero at the
origin if and only if (C,4, F;) has an invariant zero at the
origin.

5. Perturbation analysis

In Section 4.2, the limiting properties of the Riccati ma-
trices IT and P were determined. In this section, expressions
for IT and P in the limit and near the limit are developed us-
ing a perturbation method. The asymptotic expansions of IT
and P, explicitly expressed as functions of y, give an under-
standing of IT and P when 7 is small which is the region of
interest for the filter design. In Chen and Speyer (2000) and
Chung and Speyer (1998), the Goh transformation in singu-
lar optimal control theory (Bell & Jacobson, 1975; Moylan
& Moore, 1971} is used to determine IT in the limit. How-
ever, the Goh transformation cannot determine IT near the
limit. In Section 5.1, IT is expanded around y=0. This shows
explicitly the characteristics of IT near and in the limit. It
is shown that the limiting IT determined from the perturba-
tion method is the same as that determined from the Goh
transformation. In Section 5.2, the inverse of IT is derived.
This shows explicitly the characteristics of P near and in the
limit. The limiting result is consistent with and generalizes
the result of Kwakernaak and Sivan (1972).
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5.1. Asymptotic expansion

In this section, I7 is expanded around y =0 as

n=> 40, @)

i=0

By substituting (23) into (18) and collecting terms of com-

mon power, the equations used for finding the 17;’s in (23)
are obtained in Lemma 8.

Lemma 8,

0 0 4 g 0
II= {zq tlz} + ¥ /
0 g{;gz 0 5132

II II
o {qu 5212} L [ 311 312] +)

3, O o, I
AT
X s
u
where : ,
o=t w| °|[4]zund
2800, =(U; i =u 10U
2 0 o] [ E

o > 0 and [u; u;] is unitary. Note that Imu; =Im Fz oz,
I,y and 5y, must satisfy:

0 =105 — Ry, (24a)
0 =Ty 611212 + A3 022 — Ry, (24b)

— Moy = oA + A3 Mgy ~ Mo 00 [g2s — Ry

+K§1ggﬂ2129 (24c)
I3, Hsyy and sy, must satisfy:
0 =IL101lyyy + 0115y, : (25a)
0 = IT31101121; + I211 011312 + A3 Mz, (25b)

— I = Mypp(Azy — O} + (A2z — Qoa o) Mz

+ 71,6002 + 3,013, (25¢)

where

Ay A4 A u uj . .
. O Y Bl I B Y
z‘fzg Az}_ Uy Uy

P 4y
II= {ﬁ: Uy Uy ugf}zl ‘YVEHLE + ’}’3‘;4 e

PRI, + 4

T
1
T

Oon Q
{ . ;} ]{F;Q;F"‘ BuQuB)) [ )
12 22

{: i
Ry RL’%} ';g Ty-icr 1
Uy U

R}, Ry §

The equations for the higher-order terms can be found in
Chen (2000).

Proof. See Appendix A. O

In Lemma 9, the solution of (24) and (25) is discussed
when CF; # 0.In Lemma 10, the solution is discussed when
CF,=0and C(4F, —F;) # 0. The higher-order cases, such
as CF,=C(AF, — F,)=0 and C[A(4F, — F,)—d/dt(4F, —
F3)] # 0, can be considered similarly.

Lemma 9. When CF; #£ 0,

I 0 0
=[u; w) 0 IHom

iy Iy
+9V? T T pr-1 5 Ty
I, EEQHEHHZE + 15
ut |
x| s (26)
iy
wfzere
~IHoy

=Hoa(An — AnRy Riz) + (A — AziRﬂlﬂu)Tﬂozz
+ Mo (A2 Ry, 43 — 022)Ton

— (R — RLR;'Rpz), (27a)
Mo =R{FRYZORYE) PR, | (27b)
Ty = o G (R, — A5 Tom), {(27¢c)

My =11 22(—A2 + Onlloy + An 115 M)
+(—Ap + Onlloy + Ay 5 1) My, (27d)

Proof. See Appendix B. [
Lemma 10. When CF, =0 and C(4F, — F3) # 0,

Wiy + 9% 9Py 94 uy
YW +92 -+ P i + 92 - vy |, (28)
P + 92 oo + 94 - vuy
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where Imvy = Im Ay and [vy v} is unitary. Only the
lowest-order term of each element is kept for simplicity.
The equation for each term can be found in Appendix C
and Chen (2000).

Proof. See Appendix C. 0O

When CF, # 0, from Lemma 9,

in the limit. Therefore, ker IT D Imu; =Im 7, = %", which
is consistent with Theorem 5.

Since the Riccati equation (18) can also be generated by
solving a differential game similar to the one in Chen and
Speyer (2000), the result of (26) gives insight into the sin-
gular differential games in Chung and Speyer (1998) and
Chen and Speyer (2000). A singular differential game simi-
lar to the one in Chen and Speyer (2000) is formulated and
solved by using the Goh transformation to derive the limit

0
M=[u; u)] [

ot oo I3\ (1o I35 I, — Magy )5,
P=fu; u] (3,—1/2 [ 2 ] + [ 2 2 a

-1 T ~1
_Hﬁzzﬂzizﬂzii

0 0

of (18) when CF, # 0 which is
—$=84+A4"S + S[B\(FFCTV'CF,)"'B] — F,0,\F]
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in the limit. By using Imv; = Im 45, and Imuy = Im 3,

Im[u;  wyv]=TImlu;  wpus (Auy — 1))
=Imlu; (I — wyu] Y(Auy — y)]
=Imlu; Auy —id,]=Im[F, AF, - F;]

Therefore, ker IT 2 Im [F, AF; — F,] = #', which is con-
sistent with Theorem 5. ~

5.2. Analysis

In this section, an expression for the inverse of IT is de-
rived. This shows explicitly the characteristics of P near and
in the limit. Only time-invariant systems are considered be-
cause Hyy; in (29) and Hgyz2; in (31) may not be invertible
for time-varying systems. In Lemma 12, P is determined
when CF, # 0.In Lemma 13, P is determined when CF, =0
and CAF, # 0. The higher-order cases, such as CF, =
CAF, =0 and CA?F, # 0, can be considered similarly.

Lemma 12. When CF, # 0,

~I1;\ I, u
B + 912 .| 62
gy, u

2

Proof. By using Lemma 9 and matrix inversion lemma,
(32) is obtained.

Lemma 13. When CF, = 0 and CAF, # 9,

+B,0.BI1s - CTH'V'AC, (30)
YRy 4y VP, Lyt Pl gt uf
P= Eﬁ; Uy ﬁz?)g] '}’—iﬁP?Z + }’—lﬁ -.- '}’—1/4}322 R Py + ’}fiﬂ ses U'lrii;f N (33)
P;i; +};!f4..; PEB .5.}311{4... P33 +‘);If4... g§;§§

where 4 = A — B(FJC"V-'CF,)"'FIC'V-!C, B, =
AF, — Fy and H =1 — CF,(FJCTV-\CFR)~'FICTV -1,
Theorem 11 shows that the limiting Riccati matrix determi-
ned from the perturbation method is the same as that deter-
mined from the Goh transformation.

Theorem 11.

0 0 ul
=38.
o aly ) 3]

Proof. See AppendixD. O
When CF, = 0 and C(4F, — F,) # 0, from Lemma 10,

0 0 0 ul
O=[u, wv, wn]|0 0 0 vl | (31)
0 0 IHuon| |vjuy

where Py, i,j=1,...,3, can be found in Chen (2000). Only
the lowest-order term of each element is kept for simplicity.

Proof. By using Lemma 10 and matrix inversion lemma,
(33) is obtained {Chen, 2000).

In the limit, when CF, # 0, Lemma 12 shows that P goes
to infinity along the direction of Im F5. In the limit, when
CF; = 0 and CAF; # 0, Lemma 13 shows that P goes to
infinity along the direction of Im{F, 4F,].

Remark 14. By using the result in Kwakernaak and Sivan
(1972), for the time-invariant and infinite-time case, under

the assumption that (C, 4, F, ) does not have right-half-plane
invariant zeros,
wP—-90 (34a)

(34b)

L — ?_!;EFZQ"EH U’? V- 1/2
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as y — 0 where U is an arbitrary matrix such that
Uu=1.

To compare this result with Lemmas 12 and 13, (34a) is
satisfied by multiplying (32) and (33) by y. By substituting
(32)into (13),

L—y Y2yl CTy !

as y— 0. Therefore, L goes to infinity along the direction of
77 Y2Im F, which is consistent with (34b). By substituting
{33) into (13),

L -y 2uiPiao] g CTV =" + 37 Puyu, o ul CTy !

as y — 0. Therefore, L goes to infinity essentially along
the direction of y~Y2Im F, which is consistent with (34b).
However, L also goes to infinity along the direction of
9~ Y4Im u,v, where Im [F, u,0;] = Im [F; AF,]. Therefore,
the perturbation method is consistent with and generalizes
the result of Kwakernaak and Sivan (1972).

6. Example

In this section, two numerical examples are used to
demonstrate the performance of the optimal stochastic fault
detection filter. In Section 6.1, the filter is applied to a
time-invariant system. In Section 6.2, the filter is applied to
a time-varying system.

y=10"*
G T ¥ E]
-50
g -100
o
k-
[
>
B
B
& 150
Y
Y
Ay
kY
Y
200} v
A
Y
A
AY
%
1
_250 i 1 i
102 1 10 10t 16
Frequency (rad/s)
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6.1. Example 1

Consider the time-invariant system from White and
Speyer (1987),

0 3 4
6 1 0
A=|1 2 3|, C= )
6 0 1
0 2 5
0 5
F§=O,F2—1:
1 1

where F} is the target fault direction and F, is the nuisance
fault direction. There is no process noise. To determine the
optimal stochastic fault detection filter, the power spectral
densities are chosen as Oy =1, O; =1 and ¥ =I. The
steady-state solutions to the Riccati equation (12) when
y=10"* and 10° are obtained, respectively. Fig. 1 shows
the frequency response from both faults to residual (5).
The left one is obtained with y = 10™* and the right one is
obtained with y = 1075, In each figure, there are two solid
lines representing the frequency response from the target
fault to the residuals using projectors (15) and A, respec-
tively. Note that these two solid lines overlap. The dashdot
line and dashed line represent the frequency response from
the nuisance fault to the residuals using projectors (15)

y=10"

Singular value (db)
8

LS
th
=)

_2SO 1 i 1
1672 10° 10> 10* 10°
Frequency (rad/s)

Fig. 1. Frequency response from both faults to the residual.
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=2
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0.5 e il i N
! ] I F
o Wk ikl b in? .k ' aj.s{ﬂ
0 5 10 15 20 25
Time {sec}

Time {sec)

Fig. 2. Time response of the residual.

and H, respectively. This example shows that the nuisance
fault transmission can be reduced by using a smaller y while
the target fault transmission remains large. Furthermore, the
projector (15), derived from solving the minimization prob-
lem, is slightly better than H, the projector used by other
approximate unknown input observers (Chung & Speyer,
1998; Chen & Speyer, 2000), at low frequency. This sug-
gests that A might not be the best choice for the approximate
unknown input observer.

6.2. Example 2

Consider a time-varying system obtained by adding some
time-varying elements to the time-invariant system in pre-
vious section,

—cos(t} 34 2sin(t) 4
A= 1 2 3 —2cos{t) |,
Ssin(s) 2 54 3cos(t)
5 — 2cos(t)
Fy= 1
1+ sin(¢)

while C and Fy remain the same. The Riccati equation (12)
is solved with Oy =1, Qo =1, V=1, Py=1 and y =
10~* for ¢ € [0,25]. Fig. 2 shows the time response of the

norm of residual (5) using projector (15) when there is no
fault, a target fault and a nuisance fault, respectively. The
faults are steps of magnitude 3 that occur at the fifth second.
The sensor noise is a zero mean, white Gaussian noise with
power spectral density of 10~*7. This example shows that
the residual is very sensitive to the target fault and much less
sensitive to the nuisance fault. Therefore, the filter performs
well for time-varying systems. .

7. Cenclusion

The optimal stochastic fault detection filter is derived from
solving a stochastic minimization problem. In the limit, the
filter recovers the geometric structure of the unknown input
observer and the nuisance fault is completely blocked. When
it is not at the limit, the filter is an approximate unknown in-
put observer and the nuisance fault is partially blocked. The
perturbation method used to obtain the limiting and asymp-
totic behaviors of the filter can be applied to other approx-
imate unknown input observers (Chung & Speyer, 1998;
Chen & Speyer, 2000) derived by solving differential games
which consider the worst-case scenarios. For time-invariant
systems, the filter performance can be enhanced by replac-
ing the nuisance fault directions with the invariant zero
directions. This notion can also be applied to other approxi-
mate unknown input observers. Finally, filter designs can be
obtained for both time-invariant and time-varying systems.
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Appendix A. Proof of Lemma 8

By substituting (23) into (18) and collecting terms of
common power,

¥ 0 =160, 1o, (Ala)
Y0 =110,110 + o0, 114, (A.1b)
7200 = I1,0,0Tp + I 05115 + o011, (A.lc)

y™V4 0 = 11,0,y + M, 0,11
+ I Q21T + o0, 115, (A.1d)
P —Ilp=Iod + A Ily — CTV~'C + M40, 1,
+I1;,0,11, + I1,0,11,
+ 0,005 + HoQo 114 — ITo01 Ty, (A.le)

'yi/4 : —-Ii’i =JI;4 —I—z{r}}; +HsQ2He + foézﬂi
+ 0,11, + ,0,115 + 11, 0,114
+ o015 — M Q1T — MyOi M, (A1)

where 0, = F,0,F) and 01 = F\Q\FT — B,,0,,BY.
From (A.1a), ITy can be written as

0 uy -
o | = u2lonuy, (A2)

o | {u

where oy, is to be determined. (A.1b) is trivially satisfied
because of (A.2). By substituting (A.2) into {A.1¢), I7; can

be written as
0 ul T
= w115, (A3)

I = 0
o=[uy u] 0

0
Iy = w] [

¢ I {u
where I1;3; is to be determined. (A.1d) is trivially satisfied
because of (A.2) and (A3).
Let
M= ] My Moy [uf (A4)
=[uy; u . .
: i ’ H;z 1555 “;

By multiplying (A.le) by [u; u,]T from the left and [u; u,]
from the right, and substituting (A.2), (A.3) and (A 4), (24)
is obtained. Let

Iy M| [u]
Iy ={u; u] . (AS5)

T T
I3, IhLip U

By multiplying (A.1f) by [u; #,]" from the left and fuy wp]
from the right, and substituting (A.2), (A.3), (A4) and
{A.5), (25) is obtained. The same procedure can be used
to obtain the equations for the higher-order terms if needed
{Chen, 2600; Chen, Mingori, & Speyer, 2001).

Remark 15. Since Imu; = ImF,, u; can be chosen as
F(FJF,)™"2. Since [u; u,] is unitary, u, has to satisfy
ulu = 0 and wjuy = I. Define Uy =1 ~ uyul. Since
ul U; = 0, the first column of u, called uy;, can be cho-
sen as uy = Uy(ULUy)™Y? where Uy; is any nonzero
column of Uj. Next, define Up =T — [uy uy 1y u?_l]T.
Then, the second column of u,, called u,;, can be chosen as
Uy = Upi(UgUs; )~/ where Us; is any nonzero column of
Us. Other directions of u, can be obtained similarly. #; and
113 can also be obtained since u; and u; are explicitly writ-
fen as functions of time. For time-invariant systems, [u; u3]
can also be obtained from the singular value decomposition
of F,0,FF and [i; 1] = 0. Note that [u; u,] is generally
not unique. However, the theorem and all lemmas in Sec-
tion 5 are true for any [u; u,] satisfying Imu; =Im F, and
[y 1] is unitary.

Appendix B. Proof of Lemma 9

When CF, # 0, Ry, is positive definite because Imu; =
Im F,. Then, from (24a), (27b) is obtained. Note that IT,;;
is positive definite. From (24b), (27¢) is obtained. By sub-
stituting (27¢) into (24c¢) and using (24a), (27a) is obtained.
Therefore, the zeroth-order term Ty (A.2) can be obtained
from (27a). Part of the second-order term IT, {A.4) can be
obtained from (27b) and (27¢).

From (25a), II3;; = 0 because ¢ and ITy;; are positive
definite. By substituting IT3;; = 0 into (25b),

= —s"ﬂ;é&ﬁm. (B.1)
By substituting (B.1) into (25¢),

Iy = Mi(~An + Onllen + 4215, o)
+ (=42 + Onllon + An 115\ H212) . (B2)

Since (B.2) is 2 homogeneous equation and the initial con-
dition is zero, 132 =0. By substituting IT;, = 0 into (B.1),
IT3;5 = 0. Therefore, the first-order term I7; (A.3) and part
of the third-order term IT; (A.5) are zero. Similar procedure
can be used to obtain (27d) (Chen, 2000; Chen et al,, 2001).
Therefore, the second-order term IT, (A.4) can be obtained
from (27b), (27¢) and (274d). Similar procedure can be used
to obtain the equations for the higher-order terms if needed
(Chen, 2000; Chen et al., 2001). It can be shown that the
rest of the odd terms (i.e., I3, IIs,...) are zero. Therefore,
when CF, # 0, the expansion of IT (23) only needs to be
in the order of y/2.
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Remark 16. Since ITyy; and IT,, are obtained from alge-
%ra;c equations (27b) and (27¢), the initial condition IT(fy )=
Py cannot be satisfied in general. This is because the di-
mension of the Riccati equation (18) is reduced in the limit
as y — 0 which leads to the occurrence of a boundary layer
{Nayfeh, 1973). The expansion of IT {26) is called the outer
expansion and valid everywhere except near 7=0. The inner
expansion, which is valid only near 7 = 0, can be obtained
by using different fast time scales (Nayfeh, 1973). Since the
inner expansion is only valid for a very short period of time,
only the boundary layer is obtained and used as the initial
condition of the outer expansion (Chen et al., 2001). Note
that in the limit, the fast time scale goes to infinity and there
is an instant junp at the initial time which is consistent with
the Goh transformation (Chen & Speyer, 2000; Chung &
Speyer, 1998).

Appendix C. Proof of Lemma 10

When CF;=0, R;; =0 and Ry =0 because Imy; =Im F,.
From (24a), II;; = 0 because ¢ is positive definite. By

s&bsﬁmting Iy =0 into (24b), Az = 0. Then, Iy
can be written as
Ta=tn wa|®  ° |[% 1
022 =1|V; U2 : . .
Mo | | v
Let
T
Y
Ly =[Tnn ] [ T] . (C2)
by

Onn Onnp fﬁ
{ T = o | @ulvr ],
031 Qum by
Ryt Run o o
S| ;| Raln vl
Rhi Rom 0y
Since Imu; = ImFy, Cu; = 0 and C(du; — 1) # 0.

Since Rzg;; = ?); U, CTV ‘C’uzv; and Im vy = Iﬂ}Agl, Rggn
is positive definite because

ALulCTV ™ Cupdy,
=l A, — uiuz)sszc V= Cup(ul Auy — uliy)
= (A" = a)I — uuYCV T CU — uu Y Auy — )
=(Auy — u)'CVIC(Auy ~ 11,) > 0
Then, IT5;7, is invertible. From (C.3b),
Moy = 67 T35 (Rooiz — Ay ozan)-

By substituting (C.4) into (C.3c) and using (C.3a),

(C4)

— Hopam = Moggna( Aoy — A2 R Roo12)
+ (42222 — A2 R5y  Raa1a ) Mogana
+ Mo (A2 R5 1 Ay — 02222) Moo

—(Ru222 — Rpp15R50 (Roon2). (C.5)

Therefore, the zeroth-order term ITy (A.2) can be obtained
from (C.1) and (C.5). Similar procedure can be used to
obtain the equations for other terms (Chen, 2000; Chen
et al,, 2001). Therefore, IT can be expressed as

YAy 4y Y0, 4+ 974 r
L1
_ 1/4 2. 2.7 1oF
I=[m w] V2T LY U v o [ T]
Y+ [0 14 1T 12 1/4 T “
Y Mgy + 97"+ Hggapp +97%--- Uy

By multiplying (24c) by [v; v,]7 from the left and [y 03]
from the right, and substituting (C.1) and (C.2),

0 = IT315,6 112121 — Roouy, (C.3a)
0 =IT3,5,01T2122 + AJyp, Hoz222 — Raznz, (C.3b)

- T
— o = Honnsadaazs + Azpon Hzaz — Ho22220000 Hoaam

(C3c)

il 1= [ e e
- .1,
K 2nlnn v 1 6 D

T
— Razaz + II515,61T02122,

Az
A2

where

i»fhzn
Ann

>

which can be written as (28).

Appendix D, Proof of Theorem 11

Since SF, =0 (Chen & Speyer, 2000), § can be written as

0 07 [auf
S={i¢‘1 uz} 0 § ;{g .

By multiplying (30) by [#; w]" from the left and
[u up] from the right, subtracting [u; u,]"S[u; u5)
and [i; 112]"S[w; uy] from both sides, and using [y ;]
[ w]" =1,

(D.1)

0 0 ‘
=S +5T+5, -8,
0 -5




R.H. Chen et al. | Automatica 39 (2003) 377-390 389

where

s 0 0 An A u

o 5| \[4n 4n uf
B{(FICTvich) '\FICTVv 1 Clu, ﬁz}), (D.2a)

0 S
On On 0 o
- [sz sz]) I:G 5} ' (020)

s [Ru Rn] {Ru R;z] Iiu'{]
0= -
R’fz Ry R‘fz Ry ug

Fy(FICTVv1cR) 'F}

0 0 ul
S = - ;| BUFECTVTICR) ! Blu w)
Lol

0 ! Ry Rp (D.20)
w u . 2¢
) K, R ‘

Since Imuy = ImF,, let uy = F,X where X satisfies
ZTFIF,% = I because uJu; = I. By using u; = F,X and
Tl= ZTF;_FFz,

ul Fo(FICTV 1 CRy) \Fuy = [T (FF CT V' CFy) 21!

=Ry (D3)
By using 4} F, = 0 and (D.3),
0 0
So= I (D4)

Since 11y =F,% +Fg:‘§, Wiy =ulFX because 1] F, =0.
By using By = AF; — Fy, u; = F,Z and ul F, % = uju,,

WB 1T = Ay. D.5)
By using (D.3), uy = F,Z, £~ = ZTF]F, and (D.5),
w, B1(F3 CTV ' CFy) ' Blu, = 4y R 45, (D.6)
By using (D.6),

0 0
%= [0 S(AnRy' 43, — On)S } ‘ ®7

By using u; = F,X and (D.5),
W B(FCTV\CRy) ' FFCTV ' Cuy = 4y, (D8)
By using (D.3), 4y = F»Z, £~ = 2TF]F, and (D.5),
w3 By(F; CTV'CF,) ' Fy CTV~1Cuy = ARy Ry (D.9)
By using (D.8) and (D.9),

0 0
s | Nt (D.10)
‘ 0 S(42 —AglRu Ri2)

By substituting (D.10), (D.7) and (D .4) into (D.1),
— 8§ =5y — AnRT'Rp) + (A — AnRGR)™S

+§{33;Ralz§’zr; - QEE)S

—(Ry2 — RLR[{'Rp2). (D.11)

By comparing (D.11) with (27a), § = Hgy.
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Abstract

Many fault detection filters have been developed to detect and identify sensor and actuator faults.
An approach to further reconstruct sensor and actuator faults from the residual generated by the fault
detection filter is proposed. The transfer matrix from the faults to the residual is derived in terms of
the eigenvalues of the fault detection filter associated with the invariant subspaces of the faults and the
invariant zeros of the faults. For each fault, all possible fault reconstruction processes are derived and
parameterized by applying a projector to the transfer matrix and taking inverse. Then, the optimal fault
reconstruction process is determined by minimizing the ratio of the 2 norm of the projected transfer
matrix from the disturbance to the Hz norm of the projected transfer matrix from the fault. For the
existence of the fault reconstruction process, the invariant zeros of the fault have to be in the left-half

plane. Furthermore, for reconstructing a sensor fault, the system has to be detectable with respect to

the other sensors.

1 Introduction

Any system under automatic control demands a high degree of reliability in order to operate properly. If
a sensor fails, the controller’s command will be generated using incorrect measurement. If an actuator(
fails, the controller's command will not be applied properly to the system. Therefore, one needs a health
monitoring system capable of detecting a fault as it occurs and identifying the faulty component. This

process is called fault detection and identification. One approach to fault detection and identification is the

fault detection filter which was first introduced by [1] and refined by [2]. It is also known as Beard-Jones

detection filter. A geometric interpretation and a spectral analysis of the fault detection filter are given in
[3] and [4], respectively. The idea of the fault detection filter is to place the reachable subspace of each fault

into invariant subspaces which do not overlap each other. Then, when a nonzero residual is detected, a fault

. can be announced and identified by projecting the residual onto each of the invariant subspaces. Design

algorithms have been developed to improve the robustness of the fault detection filter 5, 6.
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Figure 1: Fault detection, identification and reconstruction

When these faults occur, the residual only has a transient response and becomes zero after a while even
though the faults still exist. A bias in a single position sensor is one possible example. However, for some
of these faults, the fault reconstruction process can still generate the magnitudes of the faults even after the
residual becomes zero. ’

In Section 2, the background of the fault detection filter is given; In Section 3, the transfer matrix from
the fault to the residual is derived. In Section 4, the reconstruction of sensor and actuator faults is discussed.

In Section 5, a numerical example is given.

2 Fault Detection Filter Background

In this section, the background of the fault detection filter is given [1, 3, 4, 9]. This is important because

the fault reconstruction process uses the residual generated by the fault detection filter to generate the
magnitudes of actuator and sensor faults.

Consider a linear time-invariant system,
i = Az + Bu (1a)
y=Cx (1b)
where u is the control input and y is the measurement. The ith actuator fault can be modeled as an additive
term in the state equation (1a) {1, 4].

= Az + Bu+ F,u,

where F, is the ith column of B and u, is an unknown and arbitrary scalar function of time that is zero
when there is no fault. The failure mode p, models the time-varying amplitude of the actuator fault while
the failure signature F, models the directional characteristics of the actuator fault. The ith sensor fault can

be modeled as an additive term in the measurement equation (1b) [1, 4.

y=Cz+ Eu, @2



The fault detection filter gain L is chosen such that A — LC is stable and there exists an invariant subspace
T; for each fault F;. 7; is called the minimal (C, A)-unobservability subspace or the detection space of F.

Assume that the invariant zeros of (C, A, F;) have the same geometric and algebraic multiplicities. Then,

T; can be obtained by
T=W, eV N
where W; is the minimal (C, A)-invariant subspace of F; given by the recursive algorithm
WH! = ImF; @ AW! NKerC) where W =9 (8

and V; is spanned by the invariant zero directions of (C, A, F;). The invariant zero of (C, A, F;) is defined

A-zI F;
as z at which " | loses rank. The invariant zero direction v is formed from a partitioning of
‘ 0

C
][]
C 0 7

When dim F; = 1, the recursive algorithm (8) implies

the null space as

W,-=Im{£;. AF, ... Akg&}

where k; is the smallest non-negative integer such that CA% F; # 0. It is assumed that 77 - -- T, are inde-
pendent. If they are not independent, the faults can only be detected, but not identified. This condition is
called output separability. It is also assumed that (C, 4, [F} --- F,]) does not have more invariant zeros than
(CAR)---(CAF).If it does, the extra invariant zeros will become part of the eigenvalues of A — LC. ;
This condition is called mutual detectability. For more details, please refer to [3]. For the algorithms to
form the fault detection filter gain L, please refer to [4, 5, 6]..

When there is no fault, the residual is zero after the transient response due to the initial condition error
because A — LC is stable. When the fault »; occurs, the residual becomes nonzero, but only in the direction

of CT; because Im F; C 7; and (A — LC)T; C 7;. By using a projector
.. A o ~ 11 .
H;y=1I-KerH; [(Ker H)T Ker H,‘} (Ker ;)T (10)

where Ker H; = [CT ---CTiy CTiyyq - CT,], the projected residual Hiris only sensitive to the fault y;,
but not to the other faults p1;2;. Therefore, the fault detection filter can detect and identify actuator and

sensor faults.




After the faulty sensor or actuator has been detected and identified, the system may switch to an
identical redundant sensor or actuator. If such sensor or actuator is not available, the controller has to
be reconfigured based on the remaining non-faulty sensors and actuators. However, if the magnitude of
the sensor fault can be obtained, the correct measurement can be obtained by subtracting the fault from
the faulty measurement. Then, the controller may continue to function normally without the need for
reconfiguration. This is particularly tzsefuf when an intermitteat sensor fault occurs. If the magnitude of the
actuator fault can be obtained, the control input applied to the system can be obtained by adding the fault
to the control command. Then, the condition of the actuator can be diagnosed and the controller can be
reconfigured such that the faulty actuator may be compensated. For example, if a bias is developed in the
actuator, it may be compensated by reconfiguring the controller given the size of the bias. If the actuator is
stuck in certain position, it can be diagnosed because the control input would be a constant regardless of the
control command. Then, the controller may be reconfigured by using the remaining non-faulty actuators to
compensate the faulty actuator allowing continued operation of the system. Therefore, fault reconstruction
increases the flexibility of the system’s reaction to sensor and actuator faults.

In this paper, an approach for reconstructing sensor and actuator faults is presented. The fault recon-
struction process generates the magnitudes of sensor and actuator faults using the residual genérated by
the fault detection filter. The block diagram is shown in Figure 1. The transfer matrix from the faults to
the residual is derived in terms of the eigenvalues of the fault detection filter associated with the invarianf ‘
subspaces of the faults and the invariant zeros of the faults. By applying a projector to the transfer ma-
trix, a projected residual that is only sensitive to one fault, but not to the other faults, is obtained. By
taking the inverse of the projected transfer rﬁatrix, all possible fault reconstruction processes are derived
and parameterized. Then, the optimal fault reconstruction process is deterﬁxined by minimizing the ratio of
the Hz norm of the transfer matrix from the disturbance to the projected residual over the Hs norm of the
transfer matrix from the faqit to the projected residual. For the existence of the fault reconstruction process,
the invariant zeros of the fault have to be in the left-half plane. Furthermore, for reconstructing a sensor
fault, the system has to be detectable with respect to the other sensors. Note that the fault reconstruction
process can also be derived numerically from the state-space models of the plant and fault detection filter by
using the Silverman’sk algorithm [7, 8]. However, the Silverman’s algorithm can produce only one particular
fault reconstruction process which is not optimal in general. Furthermore, the existence conditions and the
analytical structure of the fault reconstruction process cannot be obtained.

In addition to be used for fault reconstruction, the transfer matrix from the faults to the residual provides
a frequency domain interpretation of the fault detection filter which complements the geometric interpreta.-‘
tion by [3]. The transfer matrix provides information about the transient and steady-state responses of ‘the

residual to the faults. It is shown explicitly the types of faults that the fault detection filter cannot detect.




where E is a column of zeros except a one in the ith position and s is an unknown and arbitrary scalar

function of time that is zero when there is no fault. The failure mode s models the time-varying amplitude
of the sensor fault while the failure signature E, models the directional characteristics of the sensor fault. For
the purpose of fault detection filter design, an input to the state equation (1a) which drives the measurement
in the same way that ps does in (2) is obtained as in [9]. Define a new state Z = z + f, 1, where E, = C fs
Then, the dynamic equation of Z and (2) can be written as

i=s+But|g, ]| ® (32)

—Hs .

y=Cz (3b)

where f, = Af,. Hence, for fault detection filter design, the sensor fault can be modeled as a two-dimensional

additive term in the state equation as in (3).

Therefore, a linear time-invariant system with ¢, actuator faults and g5 sensor faults can be modeled as

Go
i= Az +Bu+ ZFaifJai {43‘)
=1
qs
y=Cz+ Z Esipis; : (4b)
=1

However, for fault detection filter design, the following system is used.

Ga gs h q
. = si
$=A$+BE+ZFG£#“1’+Z[ fsi fsi } * =A$+B?},-}-Zf;;;&i (53,)
, =1 ] §=1 ~Hsi i=1
y=Cg (5b)

where g =g, 4+ ¢5. Fori=1---q,, F; = Fy; and p; = po;. Fori= 1---¢s, Fipq, =[fsi fsi] and Hitg, =
[itss —prsi ]T-
Now the fault detection filter will be introduced from the geometric point of view [3]. The design

“algorithms [4, 5, 6] are omitted because only the geometric properties of the fault detection filter are involved

with the derivation of the fault reconstruction process. Assume (C, A) is observable. Fault detection filter

is a linear observer in the form of
&= A%+ Bu+ L(y - C%) (6a)
r=y—Cz (6b)

where r is called the residual. By using (5) and (6), the dynamic equation of the error e = z — # and the

residual can be written as

.
é=(A-LC)e+ Y Fuy

i=1

r=Ce




3 Transfer Matrix from the Fault to the Residual

In this section, the transfer matrix from the fault to the residual is derived in terms of the eigenvalues
of the fault detection filter associated with the detection space of the fault and the invariant zeros of the
fault. This gives a frequency domain interpretation of the fault detection filter which complements the
geometric interpretation by [3]. The fransfer matrix provides information about the transient and steady-
state responses of the residual to the fault. It is shown explicitly the types of faults that the fault detection
filter cannot detect. In Section 3.1, the actuator fault is considered. In Section 3.2, the sensor fault is

considered.

3.1 Actuator Fault
From (4) and (6), the transfer matrix from the actuator fault p,; to the residual r is

r(s) _ oI — —ig .
#m.{s}—-C(I A+ LCY *F,;

When (C, A, Fy;) has pe; invariant zeros at zai1 - - - Zai p,s, from {7), the detection space of Fy; is
Toi = Im{ Foi AFg -+ AFFy Veid Vaiz *°  Vaipw :t

where k,; is the smallest non-negative integer such that C A%« Fy; £ 0 and Vai,1* " * Vaiyp,; are the invariant

zero directions. Let d,; 2 dim 7,; = kqi + pai + 1. Assume that Ag; ;- - Aais,., the eigenvalues of A — LC

associated with Ty, are distinct. Since 7,; spans §,; eigenvectors of A — LC,

{A - LC}:S_, = Aag,jmj {11)
where j = 1---d,4; and
Qi1 o122 ot 015,
o Qg1 Qg2 - Qg5
{Fai AFy; «++ A Fu Vain +° Vaipa ] = [x1 Ty - Ty ] oL . (12)
&535,1 aéa:’ ;2 Tt aéui :éci

If Xgi1 - -+ Aqi s, are not distinct, (11) may be modified with the generalized eigenvectors. For 1 < k < kg;,

(A— LC)A*Fy; = (A— LC)A*Fy; — (A— LC)LCA*'F, = (A— LC)2 A 1F,; = - ..

. bai Sai
= (A - m}k+1Fag = {A - LC)’H'E Z{Yj‘j_ﬁ:j = Z)xg;aj,lxj
i=1 i=1

and

Gai Sai
(A - LG}ﬁkFai = {A - LC} Z&j,&+1$5 = EAaid%,Hz%

j=1 i=1




The resulting relationship is

| @1 = AE; sajy (13)

forj=1---8p; and k=1---kqi. For 1 <k < p,;, by using (9),

| (A= LCYWyik = Auik = Zai jVaik — Faillaif = Z{Zai,kaj,k+ka;+1 ~ Vg k0t,1)T5
| j=1 :
E and
E Sas .
| (A~ LC)aik = (A= LC) Y~ Qihtkact1Ti = 3 Nai 10 kb kos +1T;

=1 =1

Assume that g j # 2qik, the resulting relationship is

Pai 1051
Qj kphgl = —————

(14)

Zaik — Aaij
for j=1---84; and k=1---p,;. For the case where Aai,j = Zaik, Dlease see Appendix. By substituting

(13) and (14) into (12),

|
l
|
| |
35 .
I [ F&i AFai e A S‘Fai Vail * Vaipa ]
A .. kai Fai s Pai,pgy
| 1 A‘“’I Aai,i Zai,1—Aai,1 Zai,pg;—Aai1
. e kat ﬁai‘i e f}ni,p“-
_ 1 A""*g Aai,? Zai, 1™ Aai,2 Zai,pg; ~Aai,2 15
=] 011%1 @21%2 v 05,,1%5,, . . . . . (15)
) ver i Paia ... Paipg;
1 Xeiga: ai0ai  Zai,1—Aai,é,; Zai,pa; ~Aai,bn;
From (11), -
| (sI ~ A+ LC)zj = (5 — Aaij)zj = (8] — A+ LC) 'z = z;
| §— }‘m’,}'
% Then,
|
1
8—~Aai,1
i o Y
-1 _ E : 3,1 — 8—Aai,2
C(Sf —A +LC) F,; = ——S ”): — C‘xj = { 01T Qea®r Qg 1%6, } ‘m (IG}
j= ahj :
1

8~Xaib,;

By using (15),

C(sI—A—i—LG}‘lFaé:CA"‘“‘;Fai{(} el 001 0 .- Q}

= - -1
1 Agiyq  --- e Yai 1 ver etrgy 1
at, ai,l zai,l—Aai,l zai,pni—}\ai,l s"\ai,l
1 Agg --- Mea  _Pan o Toipg; .
at, ai,2 Zai1—Aai,2 Zai,pa; —Aai,2 §—Aai,2
kai Pai1 Pai,p,; 1

1 Asis. -+ Afe ety ., L Tetpey 3
ai,8ai 0i,0ai  Zaii—Aai s,y Zai,pg; ~Aai,b; 5~Aai,6q;




By using Cramer’s rule in matrix theory [10},

C(sI — A+ LC) 'Fy

1 A cee pFac—t 1 Pai1 Pat,pg;
a1 ai,1 s—Xai,1 Zai,1~Aai,1 Zai,po;—Aai,1
1 Jdgiz - Arai—1 1 Das 1 _Paipg;
at, ai,2 §—Agi,2 Zai,1~Aai,2 Zaipa; —Aei2
det
1 Aais Kai—1 1 Zai,1 — Paipg;
a1,0ai aidai  3—Aaid,;  Zaii—Aaid,; Zaipgs —Aaibag

. . CAbF,; an
Pai1 Vai,pgg

1 aig oo AR

at,1 Zai1—Asi 1 Zai,py; —Aai 1
1 Agio Akai i Vai,py;
at, ai,2 Zai,1—Aai,2 Zai,p,;—Rai,2
det
1 Aais kai Dgi 1 Paipgs
a%,9ai ai,da: 3ci,1_Ani,éai zai,pai—Aai,éa.‘-

By using the determinant operations in matrix theory [10], the numerator of (17) becomes

— s kel Zaia(s=Aas1) ||| Paipgi(8=Aain)
1 8= Aai,1 (s '\‘“si})\ﬁi;i 1 Zai, 1~ Aai 1 Zai,pa; —Xai,l
e S W) det :
at
03 (6 Agi s
Hj_i( “h S — A (5 = Agi )Aka;—i 1 Zai(8—Xaidei) | Patwgi(3—Aassy;)
atdas 01,801 34,804 Zai,1—Aai,,; Zai,pa; —Aai,by;
Ty . _ vkas Pas3{s—%ai1) Bai,pgi (8=Zatpy;}
1 Aa?”}' ‘)‘ai,i 1 Zai, "Aai, 1 Zai,pa; '—Asz‘, 1
= [T det : : : :
at
i=1\8 — Aai,j . -
J=1 o —A; . —)\kai 1 376:}1{3"30.{‘1) s Paipys {s‘zni,pgg}
L ai,dai ai,6ai Zai, 1~ Aai by Zaipg;—Aai,bg;
a
r \ Kai Pai1 Paipyg
P 1 Aaia Aat )1 Zai,1—Aai,1 Zai,paq —Aai,1
=1 (8 — Zas,j) .
= det
£:3
Hj:l (5 — Aaig) _ 5.
1 Auis AFat — Paia —Peipei
L ai,8q: 6i8ai  Zai,1~Aaid,; Zai,pa; —Aai,by;

Therefore, from (17),

r(s) _ Hf:i{s — Zaij)

#ai(s)  TT5 P4 (s — Aatg)

CAF=F, (18)

Remark 1. When pg;(t) = i‘}:l aje*is* where a;’s are arbitrary constants, r(t) becomes zero after
a while [11]. Therefore, the fault detection filter cannot detect this type of actuator faults because the
residual only has a transient response when the faults occur. For example, if (C, A4, Fy;) has an invari-

ant zero at the origin, the fault detection filter cannot detect the actuator fault if it is a bias. ]

3.2 Sensor Fault

From (4) and (6), the transfer matrix from the sensor fault u,; to the residual r is

r(s)
psi(s)

=By —C(sI - A+ LC) 'LE,; = C(sI — A+ LC)™* [(sI — A+ LC)fsi — LCF.4)

=sC(sI - A+ LC) 1 fy —C(sI — A+ LC) fui (19)




because Eg; = Cf,; and fo; =>Afsi. Note that [ fs; fsi] is used for fault detection filter design. When
(C, A, fsi) has ps; 1 invariant zeros at Z3i,1 * " Zsi,p,:q» bhe dimension of Ty 1, the detection space of fy;, is
Psi,1 + 1 because Cf,; = Ey; # 0. When (C, 4, f,;) has Dsi,2 invariant zeros at 2 p,; 41 250, 0i 1 4psi 2> BHE
dimension of Ty; 5, the detection space of fy;, is kg + Psiz+1 wheré ksi is the smallest non-negative integer
such that CA*= f,; 5 0. For the fault detection filter, Tsi1 © Toi2 5pans kg; + Psi;1 + Psi2 + 2 eigenvectors
of A— LC. For the fault reconstruction process, it is assumed that Tsi, and Ty span pg g + 1 and
ksi +psia+1 eigenvectors of A — LC, respectively. This can be achieved by considering fy; and f;; as two
separate faults when designing the fault detection filter. It is also assumed that (C, 4, f,;) and (C, A, fsi)

are mutually detectable.

By following the same derivation in Section 3.1,

C(sI— A+ LO)Lf. 321 (8 = Zots) Cf.
ST — = s ,
R | A AR CREP VI e
Pei 1 +Psi,2
- e . 8 — Zgi 4 -
O(sT ~ A+ LOY = ottt O 208 iz

ksitPoi1+psi,2+2 ]
K§=Psi,1+2 (3 - As‘n’f}
where Ay -+ Ap, 141 80d Ap, 142 ¢ Akyitpas +pas 042 8T€ the eigenvalues of the fault detection filter associ-

ated with 7,1 and 7y, o, respectively. Therefore, from (19),

4} + -‘
r(s) 8 ?’:*f (s — 2s1,5) o ?Q‘—:pl.,-,ffx:f (s — 2si,5) CAk T, (20)
- : 53 . . . &
Hsi(8) Hff_fiﬁl (8 = Xsi3) ;?;ii?.’;; Paiatlio Asi ) ’

Remark 2. For certain type of sensor faults, the residual only has a transient response when the faults ‘

occur and becomes zero after a while even though the faults still exist. Consider the following system

o A O z By
= -+ U
3.2 | Ag; 0 22 Bz
Cxl C 0 1
y = = .
s g 1 Tz

For the fault in the sensor that measures z,, its fault directions are

0 _
E, = 1 }[fs .fs]z

Then, the transfer matrix from the sensor fault to the residual is

r(s) _ sII52i(s = 2zs5)

ps(8) Tt (s —Aey)

When the sensor fault is a bias, the residual becomes zero after a while because the transfer matrix has

a zero at the origin [11]. Therefore, the fault detection filter cannot detect this type of sensor faults

because the residual only has a transient response when the faults occur. Note that the zero at the




origin is not an invariant zero of the fault. One possible example is the bias in a single position sen-
sor, i.e., o is the integral of one of the states z;. From the physical point of view, this is consistent
with the fact that the other states are not affected by the position and only affect the derivative of
the position. Therefore, they cannot be used to detect the bias in the position sensor. However, the
fault reconstruction process, discussed in Section 4, can still generate the magnitudes of the faults even

after the residual becomes zero. This is demonstrated by the numerical example in Section 5. <

4 Fault Reconstruction

From (18) and (20), the relationship between the residual and all the actuator and sensor faults can be

expressed as

7‘(3) _ qzﬂ ?:1(5 - za.i,j) C-TAk“‘iF | -(3)
N p"‘ﬁ{s = i) o

=1
si,1HDsi, 2
— Zsi,j) mpriatd (8 = Zsi;g) o F
+Z [ . +1 Eg — Py T ;) CA "fsi ;u'si(s) (21)
im1 iizl (S — Asij) Hj;;j:.;z Pei2 {s — Asig)

In Section 4.1, the reconstruction of the actuator fault is discussed. In Section 4.2, the reconstruction of the

~ sensor fault is discussed.

4.1 Actuator Fault

In order to reconstruct the actuator fault p4;, a projected residual that is only sensitive to pq;, but not to

the other faults, is needed. Define a projector §ai that annihilates all the faults except pq;.
. . N . -1 M-
Hai=1—Ker A, {(Ker )T Ker Hai] (Ker Hy:) (22)

where Ker gm' = Im{CA;‘“*Fal CAk“QFag nee CAk“"-iFa}i_l CAk“'i+1Fa,§+1 ‘e CAk“’% Esl 82
E,,, CAFfy CAF2fy ... CAksas f‘.,,gs ]. Note that H,; is the same as the projector (IO) used by
the fault detection filter. By operating H,; on the residual, (21) becomes

. Pai ($ — 2gi s
Buar(s) = it o 7o)

H;ci;-H?m-!-l( “‘}‘m‘.,j)

gaiCAkai Foitiai (S}

Therefore, the projected residual H,;r is only sensitive to pq;, but not to the other faults. Let g,; beam
by 1 vector where m is the number of the measurements. By operating ¢,; on Hgr, the actuator fault Bai

can be reconstructed from the projected residual Hyr by using

1 Hkmé—pm{-l (S

i (s) = 20i) o1 () (23)

gL H,,CAkai Fy Eei (5 — Zaij)




if all the invariant zeros of (C, A, Fy;) are in the left-half plane. Since C A<t F,  Ker Hyi, HaC ARos Foi#0
and there exists go; such that g7, H,;C A%~ F,; # 0. For example, gq; = H,;C Ake: F,;. Note that the Silver-
man's algorithm requires the left inverse of HaiCAk“‘Fm- [8]. Also note that (23) is not proper. In order
to avoid differentiating and amplifying the disturbance, a (kq; 4 1)-dimensional low-pass filter with poles
assigned as butterworth configuration may be used at the expense of introducing a delay in reconstructing
the actuator fault.
Since ¢q; is not unique, an optimization problem is formulated to determine gq; by considering the
disturbance. Consider the system (4) with the colored noise w, |
. N
&= Az+Bu+Byw+ Y Fuiftai
i=1

%
y=Cz+Dyw+ E.Esg[.ésg

i=1

where % = Aw + @ and @ is the white noise. Then,

GaiHair(5) = G3iG o (5)Hai(5) + GG, (5)(s)

where G,_,(s) = j}i;;fi,;“;’ 5 HoiC ARt Fyg and Guu,,(s) = HailC(sT ~ A+ LC) (B, — LD,,) + D]

(s - A)“I. The optimal g; is determined by minimizing the ratio of the Hy norm of the transfer matrix

from w to qg;ﬁagr over the Hz norm of the transfer function from p,; to gzﬁair.

2
min J = min llga;G "’“‘Kg (29
Qai Qat an‘l. Hai ﬁg
This minimization problem can be solved by rewriting the cost criterion as
J= iEqﬂ-?,Gwas 112 ’Yllqgcyae KI% = qz;,@maiQGi - ’}"?ziéyaeqﬁi
where 7 is a Lagrange multiplier, Gy,, = 3= [*0 Gu,,(jw)GT_(—jw)dw and G,,,, =L [ Gu“(}'w)

GT. .(—jw)dw. Note that G, and Gp,; can be computed by using their state-space models {12] For ex-

~

ample, G, = HMGW,;MCT Ho; where W, is the controllability gramian of (A — LC, Fy;) and Gy, = Hg;

A-LC By,—-LD, 0
[C DyWy,[C Dy T Hy; where W,,, is the controllability gramian of
0 I
From the first-order necessary condition,
aJ - - ~
B0 = %oiCwes = 1%2iChac = 0 = Guotlat = G, ai (25)

Therefore, the optimal g,; is the generalized eigenvector of (G‘wai,é‘ﬁui) associated with the smallest gen-
eralized eigenvalue and the optimal J is the smallest geheralized eigenvalue. Note that the ranks of G,,_,

and G,,, are m — dim(Ker f{m) and 1, respectively. To solve for the generalized eigenvector, it is more

numerically robust if the dimension of G,,,, and G,,,, is reduced from m to m — dim(Ker H,;).
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4.2 Sensor Fault

In order to obtain a projected residual that is only sensitive to the sensor fault p,;, but not to the other

faults, a projector ffsg,l is defined as
n ~ - - -1 -
Hyijy =1 — Kerflysy [(KerHyi ) Ker iz | (KerHyi,)™ (26)

where Ker iy = Im[CA*1 Fy; CA*2F,, --. CA*eF,, Eg Eg --- E,4 CAFf,, CAFf,, ...
CAkei-1f; 1 CA*sinify 1y - CAFsasf o ). Note that Hy; ; is different from the projector (10) used by
the fault detection filter where E; is not in the null space of the projector and now it is. By following the '

same derivation in Section 4.1, the sensor fault ys; can be reconstructed from the projected residual A, 51T

by using
ksi+psi1+psiz+2
i 5w (5= Aig) ¢ 4
usi(s) = = — - Gsi,1 Hsi a7 (s) (27)
9% 1 Hoin CAFs: foy P (s~ 2aig)

if all the invariant zeros of (C, A, f5;) are in the left-half plane. The optimal gsi,1 can be determined similarly
as in Section 4.1. Note that (27) is not proper and a (ks; + 1)-dimensional low-pass filter may be used to
reduce the effect of the disturbance at the expense of introducing a delay in reconstructing the sensor fault.

There is an alternative approach to reconstruct the sensor fault u,;. Define a projector };'s,:,g as
N R N L q-1 R '
Huia =1 —KerHyia [(KerHy ) KerHyiz] (Kerfuiz)T (28)

where Ker Hyi =Im [CA* Fyy CA¥3Fpp - CAbess Fog, Euy Eup-- Baica Bugyr -~ Boq, CAM
CAk2fy ... CA¥sas f, o ]. Then, the sensor fault p,; can also be reconstructed from the projected residual
H,; o by using
2i, +1
1 l_f-;‘=1i (5 — Asig) E
'3 e 2
qg;,szisEsi s H?:ll (S zsz,j) s,

if all the invariant zeros of (C, A, fsi) are in the left-half plane. The optimal g2 can be determined

psi(s) =

Hy; 2r{s) {29)

similarly as in Section 4.1 except a finite frequency range of the designer’s choice would be used instead
of the frequency range from —oo to oo because the transfer matrix from p,; to ng’zfl si,27 is not strictly
proper. Note that (29) is proper. The reconstructed sensor fault generated by (29} may be less sensitive to
the disturbance than the one generated by (27) because the disturbance is not differentiated. Furthermore,
since a low-pass filter is not required for (29), there is no delay in reconstructing the sensor fault. However,

(29) is only stable in the sense of Lyapunov, but not asymptotically stable. The effect of the disturbance

may accumulate over time.
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Remark 3. Consider a linear time-invariant system that is observable with all sensors, but unobservable

without one of the sensors.

iy An 0 31 B,
= + u
E | Az Az T2 | B,
Cxy C 0 T
y = =
b ) 0 1 To

This system is unobservable without the sensor that measures Zo. For the fault in this sensor, its fault

directions are
_ 0 0
E;= v | fe
8 [ 8§ fs] 1 Azg

Then, the transfer matrix from the sensor fault to the residual is

r(s) (s~ Az) f’:i (5= 25,5)

#s(s) T2 (s Ay)

5

Hence, the eigenvalue associated with the unobservable mode will become one of the poles of the fault recon-

struction process. Therefore, for reconstructing a sensor fault, the system has to be detectable with respect to

the other sensors. e

5 Numerical Example

Consider a linear time-invariant system with

-4 1 2 -3 0 2 r b
1006000
2 -3 -5 0 20 1
3 2 -7 1 -4 0 5 o L0000
A= , B= , €=10010 00
5 -1 3 -2 5 0 3
0 00100
-3 -5 -4 -8 0 —4
0 0 00 01
¢ 0 0 0 10 0 - -

A fault detection filter is designed to detect and identify the faults in the actuator, second sensor and fifth
sensor. Note that the fifth sensor can be considered as a position sensor because it measures the sixth state

which is the integral of the fifth state and does not affect other states. From (4) and (5), the fault directions




are
2 - - - 0 1 0 0
0 0
1 i -3 00
s 1 0 0 0 .
- _ _ 0 0
Fy= , Ea=101], Ea=1]01, Jo1 fa1 1= 3 f2 f2|=
3 [ ] g -1 [ 1 G 0
0 0
—4 0 -5 0 0
0 1
0 - L 0 0 1 0

By using the design algorithm in [5), the fault detection filter gain is obtained as

—21.4426  1.0000 13.2130 23.9835  0.0000
—6.9663 —0.5000 —0.1685 12.1966  0.0000
11.2900  2.0000 -9.4501 -15.6101 -0.0000
—14.8214 -1.0000 13.1070 26.3927  0.0000
16.2212 -5.0000 -8.1061 —27.9910 -0.0000
—4.3015  0.0000 2.5077 5.7139  3.5000

The eigenvalue associated with Fj, is —5. The eigenvalues associated with fs; and f,; are —2.5 and —3,

* respectively. The eigenvalue associated with f;3 is —3.5.

To evaluate the performance of the fault detection filter, an actuator fault and two sensor faults are
imposed on the system separately. The actuator fault simulates a stuck actuator. In Figure 2, the top left
figure shows the control command. The middle left igure shows the actuator fault u, which occurs at sixth
second. The bottom left figure shows the control input applied to the system, which is the sum of the control
command and the actuator fault. It shows that the actuator is stuck at 1 after sixth second regardless of the
control command. The sensor faults simulate the bias developed in the sensors. In Figures 3 and 4, the top
left figures show the second sensor fault g and the fifth sensor fault u,o which start at the fourth second
and end at the twelfth second, respectively. Figure 5 shows the time response of the norms of the three
projected residuals generated by the fault detection filter (6) using projectors {10) in the presence of the
colored sensor noise where A = —10001, the power spectral density of @ is 2I, B, = 0 and D,, = I. Fach
row shows the projected residuals when one of the faults occurs. Each column shows one of the projected
residuals when the faults occur. Note that only the projected residual associated with the faulty instrument
becomes large when the fault occurs. However, the projected residual associated the fifth sensor becomes
small after & while even though the fifth sensor fault still exists. This is consistent with the discussion in
Remark 2. Therefore, the fault detection filter can detect and identify the actuator and second sensor faults,

but not the fifth sensor fault.

14




To reconstruct these three faults, the relationship between the residual and the faults is obtained from

(21).

r(6) = g OFanle) + (5575 Bt = 5 O ) war9) + 5255 Buot®)

s+ 3 5
From (22), the projector H, used for reconstructing the actuator fault is obtained by annihilating [ Es; Cfa
s2]. From (23), the actuator fault can be reconstructed from

s+5

5) = ———
Ka(s) ngaCFa

qz Har(s) (30)

with the optimal g, =[0.9114 0 —0.3903 0.1308 0] determined from (25). In Figure 2, the top middle

figure shows the reconstructed actuator fault generated by (30). To reduce the effect of the sensor noise, a

low-pass filter is added to (30).

20(s +5)

() =
Pals) = Tgcp@ma}

Hor(s) (1)

The initial condition of the fault reconstruction process is zero given that there is no fault initiaiiy. The
middle center figure shows the reconstructed actuator fault generated by {31) which is close to the actual
actuator fault shown in the middle left figure. By adding this reconstructed actuator fault to the control
command, the control input applied to the system is reconstrﬁcted and shown in the bottom middie figure
which is close to the actual control input shown in the bottom left figure. This information can be used to
evaluate the condition of the é.ctt;ator and in this case, the actuator found to be stuck. To demonstrate that
the reconstructed actuator fault generated with an arbitrarily chosen g, is more sensitive to the sensor noise
than the one generated with the g, derived from solving (24), the top right figure shows the reconstructed
actuator fault generated by (30) with g, arbitrarily chosen as [0 0 0 1 0]. To reduce the effect Xof the

sensor noise, a low-pass filter with a slower pole is used.

6(s +5)

fio(s)= ———2~
Fas) T H,CFa(s+6)

g3 Har(s) (32)

The middle right figure shows the reconstructed actuator fault generated by (32) whose delay in recon-
structing the actuator fault is worse than (31). This becomes clearer in the bottom right figure where the
reconstructed control input is shown.

From (26) and (28), two projectors used for reconstructing the second sensor fault are obtained by
annihilating [CF, Es; Ey) and [CF, Cfs Es|, respectively. In Figure 3, the middle left and bottom
left figures show the reconstructed second sensor faults generated by (27) with a low-pass ﬁlter and (29),
respectively. Both are close to the actual sensor fault shown in the top left figure. However, the reconstructed
sensor fault generated by (27) is more sensitive to the sensor noise and has a delay due to the low-pass filter.

By subtracting the reconstructed sensor faults from the faulty measurement, the second measurements are
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Figﬁre 2: Fault reconstruction for the actuator

reconstructed and shown in the middle and bottom right figures which are close to the correct measurement
shown in the top right figure. In the middle right figure, the spikes at fourth and twélfth second are due to
the delay in reconstructing the sensor fault.

For reconstructing the fifth sensor fault, the projector can only be obtained from (28) by annihilating

[CF, E;; Cfs]. In Figure 4, the bottom left figure shows the reconstructed sensor fault generated by

- (29) which is close to the actual sensor fault shown in the top left figure. The bottom right figure shows the

reconstructed fifth measurement which is close to the correct measurement shown in the top right figure.
Note that the fault reconstruction process can still generate the magnitude of the fifth sensor fault even

after the projected residual becomes zero as shown in the bottom right figure of Figure 5.

6 Conclusion

The fault reconstruction process generates the magnitudes of sensor and actuator faults using the residual
generated by the fault detection filter. An optimal fault reconstruction process is derived from solving a
minimization problem by considering the disturbance. For the existence of the fault reconstruction process,
the invariant zeros of the fault have to be in the left-half plane. Furthermore, for reconstructing a sensor
fault, the system has to be detectable with respect to the other sensors. Although the fault reconstruction

process can also be derived numerically by using the Silverman’s algorithm, it is not optimal in general and

its existence conditions and analytical structure cannot be obtained.
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Figure 5: Projected residuals generated by the fault detection filter
Appendix

If the first eigenvalue of A — LC associated with 7; is at the first invariant zero of (C, A4, F;), ie.,
Aai,1 = Zai1, (14) is still true except when j =k =1, (14) becomes Fgi o1 =0. If 741 =0, (15) and

(16) become

[F&z' AFy <« ARiFy a1 - Vaipa }=[$1 op 1Ty - aéag,izéa,—]

. kai 1,176i,2 1,1 %ai,pg;

R RE PR EEE al,l)\ﬂiyl 01 kas+2 Zai,a—Aai,1 Zai,po; —Aail

. kai Pai1 Pai 2 _ Paipg

1 }"“’2 Aﬁfsg Zai,i—Aai2 Zaiz—Xai2 Zai,pa; —Aai,2

. . kot Vai 1 Tas 2 . Paipo;
1 Adi b Aai,&ni Zai,i—Raidg;  Zad,2—Aaidg; Zai,pg; —rai,dg;
and ;
1 & 1 1 T
—_ - ;= . g L L —_—
C(sl —A+LC) *Fyu=C { T Q1% LTRRET ] { Thei:  S=haia FE v }

Then, by following the same derivation in Section 3.1, (18) can be derived with a pole-zero cancellation. If

oy, =0, (15) and (16) become

Ko _
[le AFg; -+ APFh Vgin - Vaipy }*‘ [ & ko 42T1 Q21Tz - aéu;,lxéng}

1 Agig - Abe Pai 1 Fai2 - Paipa;
at, at,2 Zai,1—Aai,2 Zai,2—Aai,2 Zai,pg;—Aai,2

1 Aais cee Al Pai 1 Pai 2 . Poi,pg;
G%,0ai ai,6ai  Zai,1—Aaiby;  Zai,2—Aai,dy; Zaipg;—Aai,bg;
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and

T
-ip = 1 1
C(SI —A + LC) Fa,z =C { Q1 ko 4221 Q2,172 s, 1%5,; ] [ 0 rre verdlih v }

Then, by following the same derivation in Section 3.1, (18) can also be derived with a pole-zero cancellation.
If D431 = 04,1 = 0, the derivation is similar. Note that the two derivations above can be extended to the

case where multiple eigenvalues of A — LC associated with 7T,; are at the invariant zeros of (C, A Fy).
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Robust multiple-fault detection filter

Robert H. Chen and Jason L. Speyer*"T

Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095-1597, USA

SUMMARY

A new robust multiple-fault detection and identification algorithm is determined. Different from other
algorithms which explicitly force the geometric structure by using eigenstructure assignment or geometric
theory, this algorithm is derived from solving an optimization problem. The output error is divided into
several subspaces. For each subspace, the transmission from one fault, denoted the associated target fault,
is maximized while the transmission from other faults, denoted the associated nuisance fault, is minimized.
Therefore, each projected residual of the robust multiple-fault detection filter is affected primarily by one
fault and minimally by other faults. The transmission from process and sensor noises is also minimized so
that the filter is robust with respect to these disturbances. It is shown that, in the limit where the weighting
on each associated nuisance fault transmission goes to infinity, the filter recovers the geometric structure of
the restricted diagonal detection filter of which the Beard—Jones detection filter and unknown input
observer are special cases. Filter designs can be obtained for both time-invariant and time-varying systems.
Copyright © 2002 John Wiley & Sons, Ltd.

KEY WORDS: faull detection and identification; analytical redundancy; Beard-Jones detection filter;
approximate fault detection filter; robust fault detection filter; time-varying system

1. INTRODUCTION

Any system under automatic control demands a high degree of reliability in order to operate
properly. This requires a health monitoring system capable of detecting any plant, actuator
and sensor faults as they occur and identifying the faulty components. This process is called
fault detection and identification. The most common approach to fault detection and
identification is hardware redundancy which is the direct comparison of the outputs from
identical components. It requires very little computation. However, hardware redundancy is
expensive and limited by space and weight. An alternative is analytical redundancy which uses
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the modelled dynamic relationship between system inputs and measured system outputs to form
a residual process. Nominally, the residual is non-zero only when a fault has occurred and is
zero at other times. Therefore, no redundant components are needed. However, additional
computation is required.

A popular approach to analytical redundancy is the detection filter which was first introduced
by Beard [1] and refined by Jones [2]. It is also known as Beard-Jones detection (BJD) filter. A
geometric interpretation and a spectral analysis of the BID filter are given in References [3,4],
respectively. The idea of the BJD filter is to place the reachable subspace of each fault into
invariant subspaces which do not overlap each other. Then, when a non-zero residual is
detected, a fault can be announced and identified by projecting the residual onto each of the
invariant subspaces. In this way, multiple faults can be monitored in one filter. A design
algorithm [5] improves the robustness of the BJD filter by imposing the geometric structure to
isolate the faults and using the design freedom remaining to bound the process and sensor noise
transmission. , ;

In Reference [3], a more general form of the detection filter, called restricted diagonal
detection (RDD) filter, is given of which the BJD filter is a special case. Instead of
placing each fault into an invariant subspace like the BJD filter does, the RDD filter
places all the other faults associated with each fault that needs to be detected into the
unobservable subspace of a projected residual. Therefore, each projected residual is
only sensitive to one fault, but not to the other faults. When every fault is detected,
the RDD filter is equivalent to the BJD filter. However, some faults do not need to be
detected, but only need to be blocked from the projected residuals. For example, certain
process noise and plant certainty may be modelled as faults. By relaxing the constraint
on detecting the faults that do not need to be detected, the RDD filter is more robust than the
BJD filter [6].

One related approach, unknown input observer [7-9], is another special case of the RDD filter
when only one fault is detected. The faults are divided into two groups: a single target fault and
possibly several nuisance faults. The nuisance faults are placed in the unobservable subspace of
the residual. Therefore, the residual is only sensitive to the target fault, but not to the nuisance
faults. ‘Although only one fault can be monitored in each unknown input observer, there are
some benefits. For example, one gains additional flexibility which can be used to improve
robustness and time-varying systems can be treated [10-12].

In this paper, a new robust multiple-fault detection and identification algorithm is derived
from solving an optimization problem. The output error is divided into several subspaces by
using projectors. For each subspace, the projected output error variance due to one fault,
denoted the associated target fault, is maximized and the projected output error variance due to
other faults, denoted the associated nuisance fault, process noise, sensor noise and initial
conditional error is minimized. The cost criterion is constructed such that each projected output
error variance is included as a sum which produces approximately the geometric structure of the
RDD filter. Therefore, each projected residual of the robust multiple-fault detection filter is
affected primarily by one fault and minimally by other faults and is robust with respect to the
disturbances. Note that [12], an approximate unknown input observer, is a special case of the
filter when only one fault is detected.

In the limit where the weighting on each projected output error variance due to the associated

- nuisance fault goes to infinity, it is shown that the filter places each associated nuisance fault
into the unobservable subspace of its associated projected residual when there is no

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:675-696




MULTIPLE-FAULT DETECTION FILTER 677

complementary subspace* for both time-invariant and time-varying systems. Therefore, the
filter becomes equivalent to the RDD filter in the limit and extends the RDD filter to the time-
varying case. Numerical examples show that the filter is an approximate RDD filter when it is
not in the limit even if there exists the complementary subspace. These limiting results are
important in ensuring that both fault detection and identification can occur.

The robust multiple-fault detection filter is fundamentally different from other design
algorithms for the RDD or BID filter which explicitly force the geometric structure by using
eigenstructure assignment [4,6] or geometric theory [3,5]. Rather, the filter is derived from
solving an optimization problem and only in the limit, is the geometric structure of the RDD
filter recovered and the faults are completely isolated. When it is not in the limit, the filter only
isolates the faults within approximate unobservable subspaces. This new feature allows the filter
to be potentially more robust because of the additional design freedom which allows different
degrees of fault isolation. Furthermore, a mechanism that enhances the sensitivity of the
projected residuals to their associated target faults is provided. Finally, the filter can be applied
to time-varying systems. Although the filter has all these advantages, the process of deriving the
filter gain requires the solution to a two-point boundary value problem which includes a set of
Lyapunov equations. However, the filter gain computation can be done off-line so that the filter
implementation is as straightforward as the RDD filter.

The problem is formulated in Section 2 and its solution is derived in Section 3. In Section 4,
the filter is determined in the limit when there is no complementary subspace. In Section 5, the
projectors used to divide the output error are derived from solving the optimization problem. In
Section 6, numerical examples are given.

2. PROBLEM FORMULATION

Consider a linear, time-varying, uniformly observable system
X =Ax+ B,u+ B,w (la)

y=Cx+v (ib)
where u is the control input, y is the measurement, w is the process noise and v is the sensor
noise. Following the development in References [1,4,10], any plant, actuator and sensor faults

can be modelled as additive terms in the state equation (1a). Therefore, a linear system with g
faults can be modelied by

q
X =Ax+ B,u+ B,w-+ Z Ey; (2a)
=1
y=Cx+v (2b)

The fault magnitudes y; are unknown and arbitrary functions of time that are zero when there is
no fault. The fault directions F; are maps that are a priori known. Assume F; are monic so that
#; #0 imply Fiy; #0.

*The union of the invariant subspace of each fault fills the entire state space leaving no remaining subspace, the
complementary subspace.
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If the first s faults need to be detected where s<g, the objective of the robust multiple-fault
detection filter problem is to find a filter gain L for the linear observer

% =A% +Bu+L(y— C) €))
and projectors i 1 -+ H, which operate on the residual
' r=y—Cx% #

such that each projected residual Hyr is affected primarily by its associated target fault 4, and
minimally by its associated nuisance fault f; = [u; -+~ g,y gy - ,ug}’r, process noise w, sensor
noise v and initial condition error x{(#) — £(t). This approximates the RDD filter probiem. Even
though the last g — s faults are not detected, they are blocked from the s projected residuals used
for detecting the first s faults. By relaxing the constraint on detecting the last g — s faults, the
robustness of the filter is improved [6]. When s = ¢, every fault is detected and this approximates
the BID filter problem. When s =1, only one fault is detected and this approximates the
unknown input observer problem.
By using (2) and (3), the dynamic equation of the error, e = x — %, is

g ,
é=(A——LC)e+Z Eu, +B,w— Ly

=1
Then, the error can be written as

i=1

e(t) = O(t, to)e(ty) + / t D(z,1) (i Fu; + B,w — Lv) dr ()
subject to

d
: aq}(f, ) = {4 - LOYOLL, 1), Dty 1) =1 6
The residual (4) can be written as
r=Ce+v

To formulate the robust multiple-fault detection filter problem, it is assumed that Byt By, W
and v are zero mean, white Gaussian noise with power spectral density of O --- 0,, Oyand ¥,
respectively, and the initial state x(f) is a random vector with variance of P,. It is also assumed
that g ---p,, w and v are uncorrelated with each other and with x(t). Now a cost criterion is
needed for deriving L and H - - - H;. If the cost criterion is associated with the projected residual
Bi(Ce +v), it is unusable from the statistical viewpoint since the variance of the projected
residual generates a d-function due to the sensor noise. Therefore, the cost criterion will be
associated with the projected output error HCe. In order to determine the cost criterion, define

o Ac [ 0, de (7a)
fo
k() £ BC / r o(t, 7)F;f; dr (7b)
h@®2 e [@(t, to)e(to) + f 0, ) Buw — Lv) dz] @
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where F; = [Fy -+ Fioy Fiyp - - F,]. From (5), E[hi(Dhi(£)"] represents the transmission from g
to H.Ce, E[hi(D)h: {t) ] represents the transmission from f; to B Ce and E[h(t)h(?)7] represents the
transmission from w, v and e(fy) to H;Ce where E[e] is the expectation operator. Note that the
power spectral density of ; is QI- = diag(Q: --- Qi1 Qis1 -~ Q) and e(tp) is a zero mean random
vector with variance of Py if 2(f0) = E[x(%)].

‘Therefore, the robust multiple-fault detection filter problem is to find the filter gam L and
projectors H - -- H; which minimize the cost criterion :

i=1

1 1y s i n N ~ -
T L sg{z {y—fE{ks(t)kf{f}y} + Bl E[af(:}kfgz)f}}} &« ®

where #; is the final time and y, ...y, are positive scalars. Making y, ---, small places large
weightings on reducing the associated nuisance fault transmissions. The summation is used to
sum the s projected output error variances for detecting the s faults. The trace operator forms a
scalar cost criterion of the matrix output error variance. Note that the power spectral densities
O, ---Q, are considered as design parameters. Since no assumption is made on the fault
magnitudes, their white noise representation is a convenience. For each projected output error,
Q; and (1/y,)Q; represent the weightings on the associated target and nuisance fault
transmissions, respectively. When @; is larger, the transmission from g; is larger. This provides
a mechanism to enhance the sensitivity of the projected residuals to their associated target faults.
When (1/7,)Q; is larger, the transmission from f; is smaller. However, the power spectral
densities 0y, and ¥, and the variance P; can have physical values. When Q,, ¥ and 7, are larger,
the transmission from the process noise, sensor noise and initial condition error is smaller,
respectively.

Since the effect of the process and sensor noises on the residual is explicitly minimized, the
filter is robust with respect to these disturbances. Certain types of model uncertainties can also
be modelled as additive noises [9,13]. Therefore, the filter can be made robust to these model
uncertainties. In Section 4, it is shown that the filter recovers the geometric structure of the
RDD filter in the limitas y; —» 0,i= 1-- -5, and the faults are completely isolated. When it is not
in the limit, the filter is an approximate RDD filter and only isolates the faults within
approximate unobservable subspaces. This new feature allows the filter to be potentially more
robust because of the additional design freedom which allows different degrees of fault iseiatmn

In Section 3, the robust multiple-fault detection filter problem is first solved with H,--- A,
defined a priori as the projectors used by the RDD filter [3], i.e.

B:% 5%  KeHB=CJ, H=I-CIiCca)ciTci)’ ©

where CJ = {Céi’-; « CTi1 CTiga -+ CT ). For time-invariant systems, CZ; = [C4% Jit
CAbafy - CAdn f; ;] where f;; is the _;th column of F;, &;; is the smallest non-negative integer
such that CA i f;;#0 and p; = dim F;. For time-varying systems, the projector (9) is generalized
with C7; = [Chi 5, Chins, -+ Chyps, 1 [10]. The vectors b;;5,,, j = 1+ p;, are found from the
iteration defined by the Goh transfarmation [14,15],

bijx = AW®bijp—1 — by Wwith by = fi; (10)

d;; is the smallest non-negative integer such that Cb; 5, #0 for ¢ € [t, #1]. More details about 7;
and J; can be found in Section 4.1. In Section 4.2, it is shown that (9) minimizes the cost
criterion in the limit. Therefore, (9) is the optimal projector in the limit. In Section 5, the robust
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multiple-fault detection filter problem is solved with H,---H, derived from solving the
minimization problem.

3. SOLUTION

In this section, the minimization problem given by (8) is solved. By using (7), the cost criterion
rewritten as

4] 5 R t A
r=— tr{z e [ 0L+ B Q] - FOET +B.0.5%)
1— fo o : ’

i=1

x ®(t,7)" dv CT B+ B,CO(t, to)PRD(t, )" CT Ii] } dt

is to be minimize@ with respect to L subject to (6). By adding the zero term
1/(t—t0) [ tr{1 BC{O(, HPOD(, ) — 0(t, t)Pto) (e, 10)” — [} /e[ D(z, DP(x)®(, ) Jd <}

CTH;} dt to J and using (6), the minimization problem can be rewritten as

i=1 to

i1 s . '3 ‘,
min 1 / tr {Z [ﬁ:—c / o, D)L —PCTV Y V(L - PRCTV Y @@, 7) dr CT H;] } ds
L Hh—1y o

1 /ft s -
= min tr :CW.C' ' H; | dt 11
iy 4 (Z BCwCTh an

i=t
subject to ,

Wi=—LOW; + W4~ LC) + (L — RCTV WL - RCTV Y, W(t) =0  (12)
fori=1---5 where W;>0 and

1

P; = AP, + PA" — PCTV\CP + ~F,0,F] — FQFT + B.,0,BT, P(to) = Py (13)
The term 1/(t) — 1) ff:’ tr(3or BCPCTH)dtis dropped in (11) because it is fixed with respect
" tolL. Howe\:er, it will be brought back in Section 5 when the cost criterion is also minimized with

respect to Hj --- H,. Note that (13) is solved independently of L and H; --- H,.
The variational Hamiltonian of the minimization problem is defined as

5
# = {(HCWCTB) + w{K{(A — LOW; + W4 — L)

i=1

+ L= RCTV YW@ — RCTV-YT]}}
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where K; is a continuously differentiable matrix Lagrange multiplier. The first-order necessary
conditions [16] imply that the optimal solution for L and the dynamics of X; are

O = > [-20mK + 27 — RCTY K] = 0
i=1

5 s

and

ox
ow;

where i = 1 ---s5. Therefore, the determination of the filter gain requires the solution to a two-
point boundary value problem which includes a set of Lyapunov equations (12) and (15),
coupled by (14). An alternative approach is to solve (11) numerically by using the gradient
method. However, the global minimum cannot be guaranteed because {11) may not be convex.
Note that the filter gain computation can be done off-line so that the filter implementation is as
straightforward as the RDD filter. Numerical examples are given in Section 6.

For the infinite-time case, the minimization problem (11) becomes

—Ki=—— =K —-LC)+ (A - LC)K;+ CTHC, K(t)=0 @15)

£
. . . row.oT i :
Jim min J = min tr (; BCw,C H,) (16)
subject to - ,
0= (4~ LOW; + W4~ LO)" + (L — RCTV-Y({L - RCTV )T an

fori=1---5 where ;>0 and

i A A A
0=AP + PAT — BCTV-'CP + },—FfQ,-Ff — FQFT + B,Q,B

i

The optimal solution for L can be derived similarly.

5 “lrs . )
L= (; K,-) {Z Ki(Pi + W;)} ¢ty (13)

=1
satisfying (17) and (
0=K(4d—-LO)+ (4 - LOK; + CTHC 19)

For the special case where s = 1 and y; is detected, the minimization problem (11) becomes

min
L h—¥&

141 H n
f tr [H;C / o(t, 1)L — PCTV Yy — RCTV -1 0, 1)T drCTIi-] de
) fo

The optimal solution for L is

L*=pCTy! 0)
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1 Introduction

Observers are, in many ways, an ideal tool for fault detection
and identification (FDI). Failures act as unexpected inputs into a
system and, thus, drive the error residual of any observer to non-
zero values. With careful selection of the observer gain, these
fault-driven residuals can be made to have persistent and distinc-
tive characteristics. In many cases, freedom exists to address other
design issues, such as noise sensitivity and parameter robustness.
For these reasons, the application of observers to the problem of
fault detection and identification has long been an active area of
research.

There are two types of observers used for fault detection and
identification. The first is known as the Beard-Jones Fault Detec-
tion Filter [1,2]. This filter has a unique subspace structure in
which the reachable subspaces of the modeled faults are restricted
to lie within nonoverlapping invariant subspaces that can be made
unobservable to a projection on the filter residual. Because of this,
simultaneous detection and identification can be achieved. The
failure is detected when the projection is nonzero. The failure is
identified by the subspace corresponding the nonzero projection.

The second type of FDI observer is known as the unknown
input observer. In this observer, the set of modeled faults is di-
vided into two groups: the faults to be detecfed and the faults that
are to be ignored. The former is made distinguishable from the
latter by constructing an output through which the latter set is
unobservable. Detection is then achieved when this output is non-
zero and identification is trivial because we are only trying to
detect one set of faults in the possible presence of the other. The
unknown input observer is clearly less capable than the Beard-
Jones filter, but its relatively simple structure allows for easy ap-
proximation by optimization methods [3,4]. .

As both of these approaches have become more refined, appli-
cations have begun to be seen in the literature [5,6]. With the
advent of applications, however, new issues related to implemen-
tation have come to the forefront. In this paper, we will look at
some of the challenges inherent to detecting faults in large-scale
systems. For such systems, a decentralized fault detection filter
may be the logical approach to the problem. :

The decentralized fault detection filter is the result of combin-
ing the game theoretic fault detection filter developed by Chung
and Speyer [4] with the decentralized filtering algorithm intro-
duced by Speyer [7] and extended by Willsky et al. {8]. It ap-
proximates the actions of an unknown input observer and is
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Contributed by the Dynamic Systems and Contro! Division for publication in the
JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript
received by the Dynamic Systems and Control Division March 16, 1999; Associate
Editor: 8. Fassois.

Journal of Dynamic Systems, Measurement, and Control
Copyright © 2001 by ASME

A Decentralized Fault Detection

In this paper, we introduce the decentralized fault detection filter, a structure that results
Jrom merging decentralized estimation theory with the game theoretic fault detection
filter. A decentralized approach may be the ideal way to health monitor large-scale
systems, since it decomposes the problem down into (potentially smaller) “local”” prob-
lems. These local results are then blended into a “'global”” result that describes the health
of the entire system. The benefits of such an approach include added fault tolerance and
easy scalability. An example given at the end of the paper demonstrates the use of this
filter for a platoon of cars proposed for advanced vehicle control systems.

[DOIL: 10.1115/1.1367859] ~

formed by combining the estimates of several *“local’’ estimators
(each driven by independent measurement sets). For large-scale
systems, it simplifies the health montoring problem by decompos-
ing it down into a collection of smaller problems. For some sys-
tems like a platoon of cars or a formation of airplanes, its decen-
tralized structure reflects the actual physical structure of the
system. A decentralized fault detection filter also introduces scal-
ability for circumstances such as when a car joins the platoon or
when an airplane drops out of formation for repairs. It also has
built in fault tolerance in that sensors can be checked and vali-
dated prior to their measurements being blended into the global
estimate [9].

- The remainder of the paper is organized as follows. In Section
2, the decentralized estimator is described. An essential insight
revealed there is that observers that take their gains from Riccati
solutions are much more suited for decentralized estimation than
general Luenberger Observers that do not. This leads us to a de-
centralized fault detection filter based upon approximate unknown
input observers. We describe these observers in Section 3. An
overview of the decentralized fault detection filter is then given in
Section 4. An essential part of this filter is how one obtains the
global/local decomposition needed to develop the network. We
suggest a technique based upon minimal realizations and demon-
strate this in Section 5 in an example problem based around a two
car platoon.

2 Decentralized Estimation Theory and its Applica-
tion to FDI

2.1 The General Solution. In this section, we will review
the basic results of decentralized estimation theory, A detailed
examination of this theory is given in [10]. We begin with a linear
system driven by process disturbances, w, and sensor noise, v:

i=Ax+Bw, x(0),xeR", 1)
y=Cx+v, yeR™. 2)

1t is desired to derive an estimate of x. The standard approach is a
full-order observer,

F=AZ+L{y—CE), £0)=0, 3)

which we will refer to as a centralized estimator. An alternative to
this method is to derive the estimate with a decentralized estima-
tor in which £ is found by combining estimates based upon “‘lo-
cal’’ models,

H=Ald+Biwl, deR”, (j=1...N), @
y=Eixi+vi, yieR™, (j=1...N). )

Together these local models provide an alternate representation of
the original system, which is referred to as the *‘global”” system
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for purposes of clarification. The vector, x, is likewise called the
global state. The number of local systems, N, is bounded above by
the number of measurements in the system, i.e., N<

The global/local decomposition is really of only secendary im-
portance. As Chung [10] argues, there are no real restrictions on
how one forms the global and local models. The real key to the
decentralized estimation algorithm is the relationship between the
global set of measurements, y, and the N local sets, y/. The two
basic assumptions are that the local sets are simply segments of
the global set,

Y=y 1 ©)

and that the local sets can be described in terms of both the local
state and the global state. In other words, y’ can be given by (5) or
by

yi=Clx+vi, (j=1...N). Y]
Equations (2}, (6), and (7) imply that

Cl
c={ :
CN

Ui
o=} ¢ | ®
QN

The decentralized estimation algorithm falls out when we at-
tempt to estimate the global state by first generating estimates of
the local systems (4) using the local measurement sets, ¥/, and the
Tocal models, A/:

and that

H=AR+ Dy —Bigh), #(1)=0, (=1...N). )
The objective then is to obtain the global state estimate, £,
through some simple function of the local estimates. As it turns
out, in the most general case, the global estimate is an affine
combination,
N

2 (GI#+ 1)),

i1

(10

where &/ is a measurement-dependent variable propagated by

WH=0n+(®GI-GI-Giohi, an
The constituent matrices are defined as
N

®:=A- D, GILICI,

j=1

Ri(0)=0.

LiE,

The G matrices are “‘blending matrices.”” They are so-called be-
cause they act to blend the local estimates together to form the
global estimate. They can also be shown [10] to dnrecﬂy connect
the local and global gains via

Lo ... o0

0 L?
L=[G'...6"]

$i=pl—

12

0 0 Ly
The interested reader can derive Egs. (11} and (12) by differenti-
ating (10) and substituting in the equations for the local estimators
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where appropriate. The derivation is completed through some al-
gebraic manipulation and integration by parts (see [10] or [11]).

Equation {12} looks harmless, but it turns out to be the key
relationship in decentralized estimation. In fact, it is the necess:
and sufficient condition for decentralized estimation [10,11]. An-
other interesting fact is that (12) does not have a solution in the
general case for the blending matrices, G/, because of an insuffi-
cient number of equations for all of the unknowns. There is, how-
ever, one general class of estimator for which (12) is satisfied
almost automatically. This class is comprised of estimators that
take their gains from Riccati solutions, i.e., Kalman filters [7,8] or
H™ filters [12]. In this case, the local gains are found from

Li=Pi(EhT(vi)~1, 13

where, in the case of the Kalman filter, the matrix P/ is the solu-
tion of the Riccati equation:

Pi=AiPi+ Pi(ANT+ BIWI(B))T— PI(E)T(VI) " EI P,
Pi(0)=

The matrices, V/ and W/, are weightings that are related to the
local disturbances, v/ and w/, that drive the local systems (4), (5).
For the Kalman filter, it is assumed that v/ and w/ are white,

CE[w WD 1=W (-7
E[v/(No/(N 1=V 81— 1),

and Gaussian. The initial condition, P}, is chosen by the analyst

based upon his knowledge of the system. In the global system, the
gain is

L=PCTy~!,
where
Vi 0 - 0
0 V2 ¢ o
v= 0 : a9
0 N

The matrices, V/, on the block diagonal of V are the local mea-
surement noise weightings. In our example, however, we will
show that there is some design flexibility in choosing the global
weight. Specifically, one can choose scalar gains on the local
weightings,

VvVt 0 - 0
0 azif‘“ ] 0
: [
0 cee ees QNVN

This added flexibility allows us to meet other design criteria that
might arise in the problem. In our example in Section 5, we dem-
onstrate how to use this design freedom to improve the response
of our decentralized fault detection filter to the faults that we want
to see. ,

The matrix, P, is the solution to the global Riccati equation,

P=AP+PAT+BWBT—PCTVCP, P(0)=P,.
The blending matrix solution is then

V= (15)

GI=P(sH(a;P)™" j=1,....N, (16)
where §7 is any matrix such that
Ci=Eisi, an

One can, in fact, always take §/=(E))'C/ where (B is the
pseudo-inverse of E’ [8]. Note that the solutions for G/ will al-
ways exist for Riccati-based observers so long as P/ is invertible
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or, equivalently, positive-definite. This will always be the case if

the triples, (C/,A7 B/, are controllable and observable for each of
the local systems. ’

2.2 Implications for Detection Filters. The analysis of the
previous section implies that we will be able to form a decentral-
ized fault detection filter in the general case only if we are able to
find a Riccati-based observer that is equivalent to a Beard-Jones
filter or unknown input observer. The most direct way to achieve
this is to find a linear-quadratic optimization problem that is
equivalent to the fault detection and identification problem. This is
an analog of the famous inverse optimal control problem first
posed by Kalman [13]. In [4], however, it is shown that the Beard-
Jones filter gains do not correspond with those derived from
linear-quadratic problems. An indirect way to get a Riccati-based
observer is to pose a linear-quadratic optimization problem that
closely mimics the fault detection problem. Such a problem was
posed and solved in [4], and we will review the solution found
there in the next section.

3 The Approximate Fault Detection and Identification
Problem

3.1 Problem Formulation. Consider the system given by
(1), (2) with the further assumption that the state matrices have
sufficient smoothness to guarantee the existence of derivatives
various order. Beard [14] showed that failures in the sensors and
actuators, and unexpected changes in the plant dynamics can be
modeled as additive signals,

i=Ax+Bw+F i+ +Fp,. (18)

Let n be the dimension of the state-space. The nXp; matrix, F;,
i=1---g, is called a failure map and represents the directional
characteristics of the ith fault. The p;X 1 vector, u;, is the failure
signal and represents the time dependence of the failure. It will
always be assumed that each F; is monic, ie., F;u;#0 for u;
#0. See [154] for further details on how to model failures.
Throughout this paper, we will refer to 4, as the ““target fault”
and the other faults, u;, j=2-:-g, as the “‘nuisance faults.”
Without loss of generality, we can represent the entire set of nui-
sance faults (and, if desired, the disturbance, w) with a single map,
F,, and vector, p,:

.i'=Ax+F1pr,i-§-F2;L2.

Suppose that it is desired to detect the occurrence of the failure,
#1, in spite of the measurement noise, v, and the possible pres-
ence of the nuisance faults, x£,. The Beard-Jones filter solves this

problem by finding a gain, L, so that a standard Luenberger Ob-
server,

F=AS+L(y—C%), ‘ 19
will have an invariant subspace structure that restricts the influ-
ence of g, and u, to separate and nonintersecting invariant sub-
spaces. With a properly chosen projector, H, we can then project
the filter residual, (y — C%), onto the orthogonal complement of
the invariant subspace containing z, and get a signal,

z=H(y-C3), 20
such that
z=0 when p,=0 (u, is arbitrary). @n
To be useful for FDI, z must also be such that
z#0 when u#0. 22)

If we restrict ourselves to time-invariant systems, (22) will be
equivalent to requiring that the transfer function matrix between
£1(2) and z(#) to be left-invertible. Left-invertibility, however, is
a severe restriction, and it has no analog for the general time-
varying systems that we want to consider here. Previous research-
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ers [15,16] have, in fact, only required that the mapping from
#4(f) to z(#) be input observable, i.e., z#0 for any u, thatis a
step input. It can be argued {16] that z will be nonzero for *“almost
any” uy, since g, is unlikely to remain in'the kernal of the
mapping to z for all time.

We formulate the approximate detection filter design problem
by requiring input observability and relaxing the requirement (21).
Instead of (21}, we require only that the transmission of the nui-
sance fault be bounded above by a preset level, ¥>0:

L= . @

Equation (23} is identical to the disturbance attenuation problem
from robust control theory. We refer to the solution to the ap-
proximate detection filter problem as the game theoretic fault de-
tection filter.

We complete our formulation of the disturbance attenuation
problem for fault detection by constructing the projector, H, that
determines the failure signal, z. For time-invariant systems, this
projector is constructed to map the invariant subspace containing
the range of F, to zero [14,15], i.e., :

H=I-CF(CEYTCET Y (CE)T, 24
where
F=[APif, ... APnf,]. 25

The vector fis i=1-+-p,, is the ith column of F,, and the integer
B; is the smallest natural number such that CAPif;+0. With little
additional effort, this result can be extended to the time-varying
case,

H=I-CEW)[(CE@®)TCEW (CE@))T. 26)

The columns of the matrix,

F@O=[60(), ... b20)), @7)

are constructed with the Goh Transformation [4]: ,
bHO=F1), ©3)
bi()=A()bI"()—Bi~". 29)

In the time-varying case, ; is the smallest integer for which the
interaction above leads to a vector bf (¢} such that C(f)bf 6]
#0 for all re[t5,4;]. It will be assumed that A(#), C(0), and
F5(t) are such that B; exists. Since the state-space has dimension,
n, B; is such that 0<8;<n—1. :

Remark 1. One of the advantages to the disturbance attenuation
approach to designing FDI Observers is that the time-varying case
can be handled as easily as the time-invariant case. This is an
improvement over classic detection filter designs.

We are now ready to discuss the conditions under which the
solution to (23) will also generate an input observable mapping
from g, to z. The key requirement is that the system be oufput
separable. That is, F; and F, must be linearly independent and
remain so when mapped to the output space by C and A. For
time-invariant systems, the test for output separability is

rank [CA%f,,...,CA%f, ,CAPf,, ... ,CAPnf, ]

=p1+p;. (30)

As in (25), f; is the ith column of F,, and B; is the the smallest

integer such that CAPif;#0. Similarly, f; is the jth column of F,,

and & is the smallest integer such that CA%f;#0. The integer
sum, py+p,, is the total number of columns in Fy and F,.

For time-varying systems, the output separability test becomes

rank [C(OBT(D), .....COBPH),CBF), ...,
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COB1=pi+pa, Veelton], @)

where the vectors, bf f and Eff, are found from the iteration de-

fined by (28) and (29). The initial vector, E}, is set equal to the jth
column of F,, and b} is initialized as the ith column of F,.
The following proposition, given in [4], connects output sepa-
rability to input observability and shows the importance of the
monicity assumption:
Theorem 2. Suppose that a given filter satisfies (23) and generates
the failure signal z given by (20). If F; and F, are output sepa-
rable and F; is monic, then the mapping, p,(#)—z(s), is input
observable.

3.2 A Game Theoretic Solution. We now turn our atten-
tion to the disturbance attenuation problem implied by (23). We
begin by defining a disturbance attenuation function,

f (- ds
D o

=7 )
|l o2+ =8,
o

D,y is simply a ratio of the outputs over the disturbances. Equa-
tion (32) is patterned roughly after (23). We have added the sensor
noise, v, and the initial error, x(#;) —£;, to the set of disturbance
signals to inject tradeoffs for noise rejection and settling time into
the problem. M, V, @, and Py are weighting matrices. Note that
we do not include the target fault, x,, at this stage of the design
problem, since we are now focusing on nuisance blocking. Qur
only concern with g, is that it be visible at the output, which is
what Theorem 2 guarantees. The disturbance attenuation problem
is to find the estimate, £, so that for all u,, veLy[#,4], and
x(t) e R,

Dafs Y.

The positive real number, v, is called the disturbance attenuation
bound. (C,A) will always be assumed to be an observable pair.
To solve this problem, we convert (32) into a cost function,

J= j"sl[E¥HC(x—f)||é— ’)’(ﬁﬁziﬁf—ﬁ ly—Cxl3-1)1dt

~lx(t0)—ollf,, (33)

where we have used (2} to rewrite the measurement noise term.
Note that we have also rewritten the initial error weighting, defin-
ing Ily:=yP,. The disturbance attenuation problem is then solved
via the differential game,

min max max maxJ<(, G4
¥y Eg x(g)
subject to
x=Ax+F 272,
y=Cx+vu. 35

Those familiar with linear-quadratic optimization, will recognize
the solution of the differential game [4] to be a Luenberger Ob-
server,

E=AR+HIITICTV Iy —CR), £(tg)=1%, (36}
whose gain is taken from the solution to a Riccati equation,

1
—TI=ATII+TIA + ;HFzMFgII

+CT(HQH—-yV™1)C TI(ty)=11,. 37

In many cases, it is desired to extend finite-time solutions of game
theoretic problems to the steady-state condition. Whenever it is
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possible to find such a solution, the optimal estimator will be
given by (36) with II being the solution of the algebraic Riccati
equation,

1
0=ATH+TA+ ;mgmrgne- CHHQH-yV ™ HC.

(38)
However, unlike linear quadratic optimal control problems, there
are no conditions which guarantee the existence of a unique, non-
negative definite, stabilizing solution to the steady-state Riccati

equation, except in the special case where A is asymptotically
stable [17].

4 The Decentralized Fault Detection Filter

Given the results of the previous two sections, we now propose
a decentralized fault detection filtering algorithm. The essential
idea is to implement the Riccati-based game theoretic fault detec-
tion filter as a decentralized estimator. An overview of the proce-
dure is as follows:

1 Identify the sensors and actuators which must be monitored
at the global level, i.e., define the target faults for the global filter.

2 Identify the faults that should be included in the global nui-
sance set. The remaining faults should be monitored at the local
levels. ‘

3 Derive global and local models for the system including fail-
ure maps. Chung [4] contains a brief discussion about this pro-
cess. We will demonstrate one method in which the local models
are derived from the global model via a minimum realization.

4 Design game theoretic fault detection filters for the local and
global systems. Solve the corresponding Riccati equations and
store the solutions for later use.

5 Determine the blending solutions G/ from Fq. {16).

6 Propagate the local estimates, £/, and vectors, #7, and then
use the decentralized estimation algorithm (10) fo derive a global
estimate, £.

7 Determine the global failure signal from (y— C£) where y is
the total measurement set, C is the global measurement matrix,
and £ is the global fault detection filter estimate just derived.

Remark 3. Minimum realizations leave only those states that are
both observable and controllable. Qur use of minimum realiza-
tions in step #3 extracts the local models from the global model by
pulling out only those states (or combinations of states) that are
observable through the local measurements, y/, and driven by the
failures chosen to be included in the local model. Determining a
compatible and consistent local/global decomposition is a key is-
sue in decentralized estimation and control. The use of minimum
realizations that we suggest here ¢ is a logical and theoretical
rigorous approach to this problem.

5 Range Sensor Fault Detection in a Platoon of Cars

5.1 Problem Statement. We will now examine the utility
of the decentralized approach to FDI by working through an ex-
ample. The problem that we will lock at involves the detection of
failures within a system of two cars traveling as a platoon (see
Fig. 1). The cars are controlled to maintain a uniform speed and
constant separation. The platoon is the central component of au-
tomated highway schemes in which groups of cars line up single
file and travel as a unit. The objective is to eliminate the backup
caused by the interaction of individual vehicles maneuvering
across highway lanes [18,19]. The viability of the platooning
scheme, however, will depend on many factors, not the least of
which are reliability and safety.

The FDI schemes that we have examined to this point are ca-
pable of monitoring individual cars, but may not be ideal for
monitoring elements that deal with the interactions between cars.
For example, to maintain uniform speed throughout the platoon
and to keep the spacing between the cars constant, additional sen-
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OC&:‘#IO xj ‘ OCar #20 ‘

Fig. 1 Two-car platoon with range sensor

sors will be needed to measure the relative speed and the relative
distance, or *‘range,”” between the cars. In order to detect a failure
in the range sensor using analytical redundancy, however, it is
necessary to have a dynamical relationship between the range sen- -
sor and other sensors on the vehicles. Range, however, involves
the dynamics of both of the cars and so would require a higher-
order model for its detection filter.

While this is not necessarily prohibitive, it does not make use of
the many different state estimates that are already being propa-
gated throughout the platoon. The sensors on each of the cars, for
instance, will be monitored by detection filters, and it is more than
likely that a state estimate would also be generated by the ve-
hicles® control loops. Given these pre-existing estimates, it seems

logical to make use of the decentralized estimation algorithm to

carry out range sensor fault detection. ;

The presentation of the example is as follows. In the next sub-
section, we present the problem and the model of a single car
derived in [18]. We then manipulate this mode! into a two car
platoon model and define the target and nuisance faults. Referring
back to the steps listed in Section 4, these are steps #1, #2, and
part of #3. In Section 5.3, we complete step #3 by deriving the

|

[ —22.56 —0.11683 0
307.03  —35412 397.43
0 0071208  —0.81773
Abl=} © —0.0019628 0022119
0 0 0
0 0 0
| o

The measurements are

—238.06 —2698 —3753 —331.14
0.59338 6.7786 16.807 1.5162

—0.019628 022118 —0.61304 -—7.1619 -39.926 —3.6293 |

Iocal models from the global one. In Section 5.4, we design game
theoretic filters for the local and global problems and calculate the
blending matrices (steps #4 and #5). We also implement the de-
centralized estimator equations (step #6) and monitor the gener-
ated residual for indications of a Range sensor failure (step #7).

52 System Dynamics and Failure Modeling. Our ex-
ample starts with the car model used in [18). In this model, the
nonlinear, six degree-of-freedom dynamics of a representative au-
tomobile are linearized about a straight, level path at a speed of 25
meters/s (roughly 56 miles per hour). The linearized equations are
found to decouple nicely into lateral and longitudinal dynamics,
much like an airplane. Moreover, the linearized equations can be
further reduced by eliminating “‘fast modes’’ and actuator states.

For simplicity, we will only use the longitudinal dynamics which
we represent as

i=Alx,

y=Ckx,
where the superscript “‘L’ stands for ‘“longitudinal.”” The vehicle
states are

[ m,) engine air mass (kg)

@, | engine speed (rad/s)

v, | long. velocity(m/s)

x=1{ v, } vertical velocity (m/s) (39)
z | vertical position {m)

g | pitch rate (radfs)

’ | 0 ) pitch (rad)

and are propagated by the state matrix,

0 0 0 0 ]

—3.5646 —40421 -—-90765 -—0.31415}. “n
1 0 0 0
0 0 0 1

m, | engine air mass (kg)
, | engine speed (rad/s)
o, | long. acceleration {m/s))

y={ u, } vertical acceleration (m/s?) “4n

g | pitch rate (rad/s)
@y | front symmertric wheel speed (rad/s)

| @, ) rear symmertric wheel speed (rad/s)
with the corresponding measurement matrix,

1 0 0 0 0 0 o
0 1 0 0 0 0 0
0 00713 -08177 05934 6.7786 16.8068 1.5162

Cl={ 0 —00020 00221 = —-35646 —404210 —9.0765 —08141}. 42)

0 0 0 0 0 0 1
0 0 7.1220 —45806 —51.9152 58.8718 5.1944

| 0 0.0888 59738 —3.5782 —40.5542 —56.4109 —4.9773
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The rear and front symmetric wheel speeds are states that were
eliminated when the fast modes were factored out of the linearized
system.

‘5.3 Global and Local Decomposition. In order to build a
detection filter for the range sensor, we need to use {39) (42) to
build state space models for the platoon,

G=An+Fypy+Faps,
y=Cn,
and the two individual cars,
7' =A'n'+ Flui+ Fp,
yi =Flpt
P=A P+ Flui+ Fap,
Y =Ep.
We will build up our models with the following steps:

- 1 Using (39)-(42), we will derive the global state matrices, A
and C. )
2 Using the modelling techniques described in [15] and [4], we
will determine the failure maps, F
3 We will then obtain the local state matrsces, Al B, and F‘

from the minimum realization of the triples (C1,4,F,) and

(C*A,Fy).

The obvious way to get the global matrices, A and C, is to form

block diagonal composite matrices with A~ and C” repeated on
the diagonal, ie.,

, [at 0 o ct o
A=lo 4t Flo et
This, however, is not sufficient, since there is no way to describe

the range, R, between the two vehicles with the given states (39).
Range is the relative distance between the cars,

R=x'—x?,

where x' is the longitudinal displacement of car i. Displacement,
however, is not a state of the vehicle {39). We must, therefore, add
a range state to the platoon dynamics, using the equation,

3=yl 2
R=v,~v,.

The end result is that the platoon will be a fifteen-state system,

rm;’ engine air mass (kg)—Car#l
"’: engine speed (rad/s)}—Car#l
v} long. velocity (m/s)—Car#l
vl | vertical velocity (m/s)—Car#1
z' | vertical position {m)—Car#!
g' | pitch rate (rad/s)—Car#l
@' | pitch (rad)—Car#l

p={ m? ) engine air mass (kg)—Car#2

w? | engine speed (rad/s)—Car#2
v? | long. velocity (m/s)—Car#2
33 vertical velocity (m/s)—Car#2
22 | vertical position({m)-Car#2
7 pitch rate (rad/s)—Car#i2
¢ | pitch (rad)—Cari#2

\ R } Range {(m).

The corresponding state matrix is
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At 9 0
A=| 0 A o], 43)
=[0010000].
The measurement matrix is
ct o0
.......... - cl
C= Ca 0 = [CZ}; (44)
0 1

where C! and C? can be inferred from (44). Finally, the local
measurement sets are

ma‘ engine air mass (kg)—Car#1

@, | engine speed {rad/s)—Car#!

vl | long. acceleration (m/s?)—Car#l
y'={ v} } vertial acceleration (m/s®)—Car#1

g' | pitch rate (rad/s)—Car#l

w} front symmertric wheel speed (rad/s)—Car#l1
@. j rear symmetric wheel speed (rad/s)—Car#1.

and
( m2) .
2 | engine air mass {kg)—Car#2
wf engine speed (rad/s)—Car#2
z.sf Iong. acceleration {m/s?)—Car#2
- ;}f vertial acceleration {m/s?)—Car#2
y7=) g% [ pitch rate (rad/s)—Car#2
Q}% front symmertric wheel speed (rad/s)—Car#2
@? | rear symmetric wheels peed (rad/s)—Car#2
| R ) range (m).

Our amma:te objective is to design a filter that will detect a

_range sensor fault in the presence of potential failures in the other

sensors. In an actual health monitoring system, we would design
the global filter to block out all of the nuisance faults that are
output separable from the range sensor fault and then rely upon
the local filters to monitor the remaining faults. Given the size of
our example, however, the full analysis required to do a detailed
design would clutter our presentation. We will, therefore, limit
ourselves to constructing only one local filter per car and will
choose simple nuisance sets at both the global and local levels.

For this example, we choose to monitor the front symmetric
wheel speed sensor at the local level. The nuisance set is then
chosen to be the engine air mass sensor and the vertical acceler-
ometer. At the global level, the range sensor has already been
designated as the target fault. We, therefore, complete the problem
definition by choosing the engine speed sensor and longitudinal
accelerometer as the global nuisance set. There is no particular
significance attached to any of our choices for the nuisance and
target sets, aside from the choice of the range sensor as the global
target fault.

Following standard modeling techniques [15,4], we construct
the two engine speed sensor failure maps F,, ! and F, 2. To save

space we do not list these matrices out exphculy The interested
reader can refer to [11]. To complete the problem, we also need to
construct maps for the accelerometer failures, F; ! and F; o2 and

the range sensor, F . For the local filters, failure maps seed to be
constructed for the airmass sensors, F,, 1 and F, 2, vertical accel-

erometers, F; % and F; 2 and front wheel speed se;;sors, Fz and
Fy -z A quick appllcatxon of (30) will show that all of our failure
se.ts are output separable.
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We are now in position to generate the local state equations. The local dynamics for car #1 come from the minimum realization of

(C',A,[F,,,;Fé:]). The corresponding matrices are

The model for Car #2 is similarly found by obtaining the minimum realization of {CZ,A,{FmiF ,;5}}. The corresponding matrices are

A=

[ —0.087694

0.0038094

E’=

[ —0.26387

0.28256
—12.546
—-28.279
195.07
3.8593
—4.0915
—2654.8

-0
]
—12.008
5.9034
-0.0112
—43.291
40.011

| 0.69369

—0.27372
0.2607
—12.054
—27.514
193.92
4.598
—4.8456
—2639.1

0
0
—11.76
6.9535
0.01132
—39.922
39.775
—-0.71973

0.97419
0.042752
—1.4539
—2.1059
—2.3745

0.3571
—0.37617

32.315

0

0
—0.5409

0.5329

—0.7316
—8.6999
—0.4870
—0.01465

—0.040683
1.0237
—-{.79488
—3.0468
38.898
0.5193
~0.5471
—529.37

0
0
—1.6668
0.7915
—0.6816
1.9601
7.9783
—0.007574
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0
0
—0.002510
0.004805
—0.19848
—0.000005
0.00003
—304.44

0.9973
0.0733
0.00522

—0.00014
0
0
0.0065
0

0
0
0.0001643
8.129
~152.87
-21332
22.827
2080.5

0
0
5.2402
-31.362
~0.00195
—40.162
-31.356
—0.01755

0
0
0.000136
6.711
-126.21
-18.419
17.824
17175

0
0
4.3261
-25.727
—0.00161
—33.156
—25.886
—0.01449
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—0.12133 —0.010701 39941 42617 12879
0032194 16765 57.123 7.2346 2627  —66578  496.6
000005  —0.021736 —-22.56  0.11478  —00001  0.00008 —0.00005

A'=| 0077512  7.7689  ~301.66 —38647 —137.16 3612  —28167
-0.096212 —0.073026  2.498 02312 0.89067 —19.054  9.0737
—094943  —026102 —020407 —0.067025 ~0.41229 —2.4689 0.16425

| —027186 0092418 0.12024  0.19024  —0010912 —1302 —1434
[ 0 0 1 0 0 0 0 ]
—0.0004 0.18605 0 —098251  0.008136 —0.000665 0.000392
0.0043561  —0.014182 0 —0.090334 —02118  11.266 —1431

E'=| 000015951 —0.00067636 0 -—00048006 —4.0642 —41.318  —2.4264 |,

—000014266  ~097872 0 —0.18537 0.0016064 0.024547 —0.084511
—0.00030256  0.0016942 0 0.0069288 14478  —34.102 —71.377
| 00009564  —00038718 0 —0019192 21041  —55207  42.987
[0 —0.12133 ] [ 79031  —1.6879]
0 57.1230 —-0.0007 —0.0213
1 —22.5605 0 0
p;; 0 —301.6586|, p;§= —0.0048 —0.0057|.
0 24980 -0.1760 —0.7911
0 —02041 —0.0068 —7.4136
[0 012024 | | —0.0003 —2.1388

0 -
0
0.03416
-0.06539
2.7044
0.00006
~0.00042
~57.774 |

0.0733 7
=0.9973
—0.0711
0.00196
0
G
—0.08855
0




0 0 "0 0
0 0 0 0
0 0 0 0
R 0 0 X 0 0
Fai=| 09073 0.0002 Fa=l 0
0 0 ~50327 —4.9282
0 0 6.0961 —6.2254
| 00733 —307.8575 0 0 |

With all of these system matrices in place, we can now form the residual projectors, H, needed generate the failure signal, z. In the
global filter, we define

F=[F ,iFyiF 2F ).
In the local filters, we define
fi_rpi of .
F‘—{FmiFﬁi} i=12
The projectors, H and H', are then found by applying (24). Again, we do not show either of these matrices to save space.
54 Decentralized Fault Detection Filter Design. We will first design filters for the local systems. As with all Riccati-based
filters, the central step in the process is in obtaining a solution to the appropriate Riccati equation. For simplicity, we will use the
- steady-state version. Typically, one iterates on the design by trying various combinations of weightings until a Riccati solution is found

that leads to a filter that gives the best tradeoff between target fault transmission and nuisance fault attenuation. For this example, it was
found that choosing

Mi=10xI,, V'=I,,

Q;=I’;, 'Y;=018

as the weightings and attenuation bound leads to a filter gain,

Singular Value Plot of Local Game Theorstic Filter #1

-120 i i i

Fig. 2 Platoon example—-signai transmission in local detection filter on car # 1
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Singular Value Plot of Local Game Thaoretic Filter #2
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Fig. 3 Platoon example—signal transmission in local detection filter on car # 2
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Fig. 4 Platoon example—failure signal response of the decentralized fault detec-
tion filter #1

[ —0.0060  0.0007 0.0112 0.1432  —0.0004 —0.1021 —0.0683
—0.0973 1.3243 0.0971 —0.0185 —-0.0000 -0.0205 0.1017
0.0622 —0.5231 -—-0038 0.0079 0.0000 0.009¢ —0.0388
0.5139 —6.9936 -0.5124 0.0959 0.0000 0.1058 —0.5385
—0.0041 0.0581 0.0057 ~—00141 0.0000 —0.0118 -—0.0042
| 0.0002 —0.0028 00151 —0.0910 -0.0000 -0.1169 —0.0915 |

L}=1000x
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for car #1. The transmission properties of the filter are depicted in Fig. 2. The minimum separation over frec;tiency is only about 10 dB,
but the filter has particularly good separation in the high frequency range. For car #2, the same weightings, adjusted for the different

dimensions of the car #2 dynamics,

M?=10X1,, V?=diag[111011111],
0*=k, v,=018,
leads to
[ —0.0001 —0.0000 0.0000 —0.0000 —0.0000 -0.0003 —00002 1.1715
0.0001 00000 —0.0000 00000 00000 00003 00002 —1.2154
—=0.0000 —0.0000 0.0000 —0.0000 —0.0000 00000 00001 —0.0247
P e 0.0001 00000 —0.0000 —0.0000 ~00001 —00000 00128
0.0081 —0.0010 —0.0000 00009 00000 00020 00012 —00002|
0.0027 00005 00003 —0.0542 00001 —0.0106 -—00146 —0.0306
—0.0034 00003 00005 00182 —0.0002 —00482 —0.0299 —0.0233
| 0.1650 —22230 -0.0162 0.0269 0.0000 0.0286 —0.1752 0

The transmission properties for this particular filter are depicted in
Fig. 3. The reader should notice the similarities in the level of
performance between this filter and the one designed for car #1.

" Finally, for the global system, a fault detection filter for range
sensor health monitoring in the platoon is found by solving the
corresponding Riccati equation with the weightings:

’YV»I :diag{1,10{},1@@,1,1,I,I,i,lﬂ{},Iﬁ{},i,I,I,I,i}, Q=IIS 3

M=100xI;, y=0.18.

For the global system, however, we are not interested in finding a
gain for a global filter, but in obtaining a global Riccati solution,
11, for use in determining the blending matrices,

. 1o & i v i

Gl=yII7'§ =1/
i

The connecting matrices, §7, are taken to be the pseudo-inverses
of E/. As the dimensions of these matrices are quite large,? we
cannot list them in this paper.

Note that we use our design freedom in V. The reason for this
is that if we had not used this freedom and chosen

vioo

=lo v
the response of the filter to the target fault input would have been
unsatisfactory. In Fig. 4, we show this response, which is con-
structed by implementing our decentralized estimator, (10). In this
figure, the time history of the failure signal, z, is shown when the
-system is driven by a fault in the range sensor and a fault in the
longitudinal accelerometer. The range sensor is the target fault
and as the corresponding plot in Fig. 4 shows, this fault is seen
almost immediately in the residual. Better yet, its presence is seen
over a sustained period. Had we not adjusted the weightings in V,
the time constants in our decentralized filter would have been too
small resulting in a target fault response that dies away too
quickly.

The reader should note that the responses seen in Fig. 4 can bc‘

understood to be the result of the direct feedthrough of the fault
into z since a range fault goes directly to the global measurement
vector, y. The longitudinal accelerometer is the nuisance fault and
we see in the corresponding plot that this failure is also fed
through to the residual but at a much smaller magnitude. A rea-

T is 15X 15 for instance
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sonably well-designed redundancy management system should,
thus, be able to detect the range sensor fault no matter the behav-
ior of the longitudinal accelerometer.

6 Conclusions

In this paper, we have introduced a decentralized fault detection
filter that provides an alternative way fo monitor large-scale sys-
tems for faults. The resulting filter has additional fault tolerance,
because it can check the health of its contituent sensors prior to
deriving the top level estimate, and it is easily scalable. We have
also introduced a logical and theoretically rigorous method for
decomposing large, global systems into smaller, local ones using
minimum realizations. An example based upon the linearization
of a nonlinear car model is given to illustrate our results.
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Target Association Using Detection Methods

Jonathan D. Wolfe* and Jason L. Speyer!
University of California, Los Angeles, Los Angeles, California 90095-1597

A residual-based scheme is presented for solving the radar track-to-track association problem using bearings-
only measurements. To accomplish track association between two stations, the residuals of a bank of nonlinear
filters called modified gain extended Kalman filters are analyzed. Once tracks have been associated between two
stations, tracks from additional stations may be associated with tracks from the first two stations by checking
algebraic parity equations. Traditional track association methods rely on the local stations’ estimated target
positionsand error variances. These local estimates may be quiteinaccurate or even divergent when using bearings-
only measurements. Our method bypasses this difficulty because our filters use raw data from multiple stations.
An example demonstrates that our methods yield results superior to those of standard methods.

1. Infroduction .

UPPOSE that several spatially distributed radar installations

are each tracking several targets. Associating a given target to
its track at each of the radar stations is an important issue, which
the radar literature refers to as the track-to-track association prob-
lem. Suppose further that the stations use passive sensors that only
measure bearings to the target, without measuring range. In this pa-
per, we outline a strategy for solving this association problem by
analyzing measurementresiduals.

Bearings-only observation functionsfall into two special classes
of nonlinear functions, called modifiable and approximately modi-
fiable nonlinearities, which are defined as follows:

Definition 1. A time-varyingfunction f : R" — R? is called mod-
ifiable if there exists an operator A : R? x R” — R7*" such that for
anyx, ¥ €R",

F&x) = fR) =Alf(0), X)x — %) 1)

Definition 2. A time-varying function f : R” — R? is called ap-
proximatelymodifiable if there existsaregion D C R” and operators
A:R? xR"— R7*" and £ :R” x R” — R"*" such that for any x,
XeD, :

@O =R =A@, D +Ex,x-DIx -3 ()

where limy, _zj 0 1€Cx, x — DI /IA(f(x), D] =0.

Song and Speyer’s modified gain extended Kalman filter
(MGEKF)! is a globally convergent, unbiased, nonlinear observer
for systems whose measurement functions are modifiable or ap-
proximately modifiable. In this paper, the observers we design for
bearings-only track association are MGEKFs,

An earlyattempt at solving the track-to-trackassociationproblem
was made by Singer and Kanyuck? In their paper, they incorrectly
assumed that estimation errors local to each station were uncorre-
lated. Bar-Shalom,? Bar-Shalom and Fortmann,* and Bar-Shalom
and Campo® later corrected this error by accounting for the correla-
tion between the local estimationerrors due to the common process
noise of the target. Later researchers have integrated the problem
of track association directly into the process of separating the mea-
surements corresponding to actual targets from clutter$’ In all of
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these references, it is assumed that both range and bearings were
measured. In some of these references, the possibility of using a
MGEKF to handle the situation of bearings-only measurements is
mentioned, but none have a discussion of the details of such an im-
plementation, in particular problems associated with the asymmetry
of single station estimation errors. Estimates based on bearings-only
measurements from a single station are especially uncertain along
the line between the target and the receiver. This uncertainty is re-
duced when measurements from physically separated stations are
used. Our method attempts to take advantageof this phenomenonby
using estimates constructed from several stations’ measurements.

The paper is organized as follows. We show in Sec. II that
bearings-only measurement functions are modifiable. (Prior results
only showed that they were approximately modifiable.!) We then
demonstrate in Sec. III that incorrect associations between two
radar stations can be interpreted as sensor faults, so that a bank
of modified-gain fault detection filters can be used to determine the
track associations. Section IV contains the main result, an algo-
rithm for solving the bearings-only track association problem. The
applicationof this algorithm to an example in Sec. V compares our
approach to a conventional track association method. Section VI
concludes the paper. i

In the sequel, inertial Cartesian coordinates describe the motion
of each target in three dimensions via the state vector

x = IX: y! zt X: I}: 2: i’rt i}: 22}3" . (3)
and the dynamics of each target are assumed to be of the form
&+ 1) = AR &) + BERW R @

Note that we include an acceleration state to model maneuvering
target dynamics.

II. Modifiability of Bearings-Only Measurements

Song and Speyer' showed that the azimuth angle azl e
[—7/2, 7/2) and the elevationangleel’ € [—x /2, 7 /2) from station
5 to target £, as shown in Fig. 1, are modifiable and approximately
modifiable, respectively. The region D in which the elevation angle
was approximately modifiable excluded an ellipsoidal region near
the sensor, making their algorithms difficult to implement for situa-
tions where the angular sensor gets close to the target, for example,
in the terminal guidance of a missile. We improve this situation
somewhat by introducing the new angle ¥! € [-# /2, 7/2) and de-
scribing the position of the target in terms of ¥! and ! = azl.
Note that W] can be calculated from az/ and el’ via the equation

zt tanel’
Y = tan~ [ =% =ta bl § sanishint 3
mon(f) - (3%) o

This section is devoted to proving that the measurement function
for W} is modifiable. '

Let X' be an estimate of x' and assume that the position of the
measurement station in inertial space, x, =[X; ¥, Z.], is known.
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i,

o,

X

Fig.1 Angles for target bearings.

Then X!, ¥!, Z!, X!, ¥!, and Z! can be computed by taking the

5% T3t
difference between elements of x‘ ¥, andx,.
Suppose that station s measures the bearings of target t with the
measurement vector z;. Define k,(x*) by

{Dt
B = [ ] =z ©)
\yr

s
The measurement residugl correspondingto k (x?) is then
h(x") — b, (&)
tan~! (7 /X!) —tan™' (¥ /X1) | , [tan~'a
- Lw(z;/x:} - tan (z;/i:)] s[o] o
Applying the trigonometricidentity
tan~Y(a)

—tan”' () = tan""[(a — b)/(1 + ab)]

we obtain

{um"a ] _
tan~18 |

L (n/x) - (/%)
T+ (/R @R

@&
L &/x) - (Z/x)
1+ (ze /x1)(2:/ %)
_i(y;}—{i _ ?;X;)
fan —_—
tan-a] XiXi + V7! .
[tan" ﬁ] - ®)

)
XXt 4 217t
Define
H{z) =
sin(®) —cos(®) 0 000000
l:sin(\lfj} 0 —cos(¥!) 0 0 0 0 0 G]
‘ (10
Let &2 /(XD + (X)), Di24/IXIX+YT!], &2

VIXD?4+(Z42), and D, 2dy/[X! X! + Z!Z']. Note also that
sin{®})=Y!/d,, cos(®)=X!/d,, sin(¥=Z!/d;, and

cos(¥]) = X! /d,. Therefore, we can express Dy and D, as func-
tions of the estimates and measured angles:

Dy = Dy(z!, %) = 1/[cos(®!) X! + sin(e!) 7]
Dy = Bg(zi,i')‘ =1 / {ces(lll;)}-{i + siﬁ(\?j)?:';]

If we express the trigonometric functions in H(Z!), Dy, and D,
in terms of X!, Y}, Z!, X‘ Y‘ and Z‘ we can write Eq. (9) as a
functionofz! an{I x‘

- ol

Finally, we can rewrite Eq. (11) as

[:i] - {U&%i‘) z/ﬁ(j;,f*)] F](zi’f} Bz(:,f*)}

xH(z)[x' —x' —# +x,] 12
and combine it with Eq. (7) to obtain k; (x*) in modifiable form,
ho(x') — B, &) =

Dy(z, #) tan~' (2, ')

rx(zi, ) . 0
o D (z, #) tan! (2, )
Bz, %)
xH(z;){x‘ —-x'] {13)

where we have made use of the identity

H(Z)x, —¥]1= [2]

Thus, we havereplaced the elevationangle elf, from which Songand
Speyer! produced an approximately modifiable function with a new
angle . Like the azimuth angle ¢!, angle W’ leads to modifiable
meas&emeat functions.

HI. Converting Incorrect Associations
into Sensor Faults

Suppose that station s can view several targets, indexed by i, and
measures the bearings of each target. Then each of these measure-
ments z/ is generated by k,(x’), as in Eq. (6). Now suppose that
another station, using its local observations, generates a state es-
timate of one of the targets that station 5 views. This estimate ¥/
corresponds to x/, the true state of the jth target at station 5, but
neither station knows the value of index j. Our goaI is to determine
which of the tracks at station s is the jth one, using only {z}, the
measurements local to station 5, and ¥/, the other station’s state
estimate of one of the targets.

To this end, let us form the following error residual between the
estimate ¥/ and the measurementz’, making use of the result from
the preceding section:

Zt— b @) = h(d) —h,@) = G2, #) ' - %) (14
where from Eq. (13)

6(.¥) =
Dz, #) tan"' (7, %)
— 0
o, %)
. D) (e, %)
Bz, &)
x H(z) )

o
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By introducing a zero term into the measurement residual, we can
rephrase it as

Z —h(&) = h,(x') — b, ) (16)

Z —h@) = Gz, ) — &) a7

2 —hE) =6, ¥) - ¥ +x - 1)) (18)

2 k@) =G(d, ) - ) + G, ¥ —x) (19)
Z—h &) =G, ) — %)+ i (20)

where pi/ & G(zi, ¥7)(x' — x/) represents the difference between
x' and x/ as a sensor fault. If = 7, we have correctly guessed the
associationbetween measurementand estimate, and there is no fault
(et =0).¥i # j, then u # 0, playing the role of a sensor fault in
the residual.

IV. Algorithm for Track Association
from Bearings-Only Measurements via Fault
Detection Filters

Supposethat there are S radar stations, with known inertialcoor-
dinates, that make bearings-only measurements in three-spaceof T
different targets. We assume that all measurements at each station
have been grouped as tracks of each target visible at that station
using conventional means.*®? In this section, we propose an algo-
rithm for associating the tracks at all stations to their corresponding
targets.

Assume that each measurement station 5 is located at known
inertial coordinates (X;, ¥,, Z;). Let ¥¥ denote a fault detection
filter’s estimate of the target corresponding to the ith track at the
first station. The bearings-onlymeasurementfunctionfor the station

s of the same target is thus
Yy -,
-1 E
r(L22)

4 —hGEY ~ G, #) @ -2+l +v 21
where Gzl , &4 }is given by Eq. 15 and the sensor noise is
v = N (@©,VH

The approximatestructureof Eq. (21}is duetothereplacementof the
measurement function in G(-, -) with the actual measurement (see
Song and Speyer'). Note that, by default, ui =0,Vi=1, ..., T.

The following algorithm, illustrated in Fig. 2, associates tracks
between stations. '

Algorithm (track association):

1)Leti=1.

2) Run a bank of T detection filters that operate on data from
stations 1 and 2, where the jth filter attempts to detect ;,L;l. Each
filter is constructed using the dynamic detection filter procedure
given next. All but one of these detection filters should register a
fault. The track correspondingto the filter that detected no fault is
associated with 2. Without loss of generality, labe! this track z.

3) For each track 7, s =3,...,8,1=1,..., T, perform the al-
gebraic parity test given subsequently. If the result of the parity test
is zero, then z is associated with z; and z}.

A 1fi<T,incrementi byl andgotostep2. Ifi =T, we have
completed the track association procedure.

Note thatestimatesobtainedin step2 are used in step 3. Therefore,
stations 1 and 2 should be chosen to maximize observability of the
targets.

Dynamic Detection Filter
For any estimator of x¥, the estimation residual determined by
the measurements z{ and z; will not converge to values near zero

unlessz} andz% correspondto the same target. One such estimatoris
the MGEKF! givenas

FrR+D=A0 0 B V7))

iy & 20 — bR (k
B = AT A rik) = { ;{k) B ;ifk)] } (23)
tan (m) ‘ FAALY) 2[x (k)]
. . . (k) =2 (%) + KU (k) (k) (24)
From the results of the preceding section, the error residual of track
J atany station s, generated by target i at station 1, is given by MUk + 1) = AGK)PIRAT (k) + Q) (25)
YU -y, 7 1
[+l /@@ —x) [+ [0 - n) G o) o)
' Zi - 7,
- - 21/5 2 0
] {1+1@-2)/(x - x)F | (2 - x))
hoigy = P _y
— 1 ‘ 1
R I Yy [ S PR T Y7 o Y
Zi -7, 0
| {1410 - 2)/ (- )} - )’
0 00000 O]
. = —— -~ 00000 0
{1+1(@v - z2)/ (R - %) T} (R - x)
(26)
0 0 0 0 00 ‘
— ————— 0000 0 0
[+ 1@ - z)/ G- x)F] (- x)
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Table1 Radar station positions

Station x Position, y Position, z Position,
identification m m m
1 50 1 ]
2 50,000 1 50
3 25,000 —400 100
Tracks from
. station 3
Track i
from station 1 1 i i i l
Tracks —_3] Bankof Bank of
from oant o Jgebri
StAtion 2 s— filters Track from parity tests Teack from
:t;t:m2 Ehai stx&mn s ﬁm
track i, stationl i:ack i, stationl
Fig.2 Track association procedure,
-1
K0 = M QT g [ MY OFL + V0] @)
e , G(zi k), 2 (k)
GEACRACELCIES I @8
G(d k), 5 ()
Pik) = {1 - K ()62, (k), 23 (), 2 (k) | }M7 k)
x {1 - K 06z 00,4k, 2 0]}
+ K (k) (Vi }'l(k}(K” )T (k) (29)
where
Vi(k) = diag{V*, V/} (30

The weighted innovations process of the MGEKF,

o
V10 = [ MI WL, + VIR Pl G

should ‘be clcse to a zero-mean, unit variance white noise sequence
onlyifz} and z2 correspond to the same target.

Algebraic Parity Test

This testdeterminesifz!, $> s> 2, T > 1> 1, is associated with
2, andz}, wherez! and z‘z are already known to be associated with
each other. Sazppose thatx" is the state estimate generatedby 7 and
z5. Then, if z} is associated with the tracks z} and z),

! .
v} £ [l M ORL, + V70| (0 ~ )
@)

should be close to a zero mean, unit variance white noise sequence.
Here, the approximate measurement matrix A,u ¢, is computedin a
manner similar to the first two rows of the matrix in Eq. (26), but
referencedto (X, ¥;, Z,), the Tocation of station s, instead of the
location of the first station (X4, Y1, Z,). The algebraic parity test is
simply to evaluate the parity equation (32).

V. Example
The track association algorithm presented in the last section is
applied to simulation data in this section. Three radar installations
were located at the positions given by Table 1, and two targets
were both modeled as ninth-orderlinear time-invariantdiscrete-time
systems with the dynamics

(1) =Fx()+ Tw(®) (33)

where

['aeaiaee 0 07
000010 0 0 0
000001 0 0 0
000000 1.0 0
FElo 00000 0 1 o
000000 O 0 1
000000 - 0 0
000000 0 —a 0
t_oeoooﬂo Q—oz_l

{‘oeo‘

000

000

000

T£|(o o0 o0 (34)

000

100

010

[_{}91_

and wherew isa zero mean Brownian motion process with covari-
ance I3 3 and o = 19 is the time constant for the first-order filters
that model target maneuvers as colored noise processes. We sample
this model at intervals of T =0.1 s to generate the discrete time
dynamics

x(k+ 1) =Ax(k) + Bw(k) 35
where ‘

T
A=gT, B= f e™Rdt, E{w(k)} = 03,
[

Ew(kw" 0] = L3438 (36)
The targets began the simulation with the initial conditions
x;(()):[Sb 220,000 30,000 250 —1000 0 0 O O)
x2(0) =[50,000 20,000 35,000 —250 1000 0 0 O O)

This configuration correspondsto the two targets initially moving
directlytowardeachother, inalinethat almostpassesthroughstation
2. In the simulation, they pass closest to each other at 1=99.2 s.
Each measurement station measures the angles ®! and ¥! to each
target at every sample time. These measurements are subject to
additive, normally distributed zero-mean white measurement noise
with standard deviation 1 deg. We assume that the measurement
noise is independentbetween sensors at all stations. Each MGEKF
begins with the a priori information

#9(0) =[25,000 120,000 32,500 0 0 0 0 O O

Pi0)=10" x I,
Finally, we assume that the local stations were able to separate their
measurements from clutter perfectly using methods like those of
Reid® or Bar-Shalomand Fortmann,* or Fortmann and Bar-Shalom ?
Figure 3 plots the weighted innovations of a MGEKF that uses
measurements from stations 1 and 2 that correspond to the second
target, whereas Fig. 4 plots the weighted innovations of a MGEKF
that uses measurements that are mismatched. Note that the inno-
vations for the correct match appear to be a zero mean white noise
sequence, whereas the innovationsfor the incorrect match are larger
and are not white. To betterobserve the behaviorof these sequences,
theirmeans wereestimated using a Kalman filter (assumingthateach
element of the weighted innovation of the MGEKF was a measure-
ment of a process that had integrator dynamics, process noise with
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residual {radians)

100 150
tima (sec)

MGEKTF residual for matching tracks,

T

residual (radians)
o N

s

) o 00 1
5 fime (sec) 50

Fig.4 MGEKF residual for mismatched tracks.

residual (radians)

time (sec)
Fig.5 Filtered MGEKTF residual for matching fracks.

covariance 1073, and measurement noise with covariance 1). These
estimates (Figs. 5 and 6) clearly show that the mean corresponding
to a mismatch looks nothing like that of the matched case.

After the tracks had been associated between the first two sta-
tions, algebraic parity tests attempted to associate the targets ob-
served by the third station relative to those observed by the first
and second stations. Two plots of residuals generated by the alge-
braic parity tests appear in Figs. 7 and 8. Again, the residuals for

residual (radians)

time (sec)
Fig.6 Filtered MGEKT residual for mismatched tracks.

100 150

time {sec)
Fig.7 Parity test residual for matching tracks.

ha’) 50 100 150
time (sec)

Fig.8 Parity test residual for mismatched tracks.

the mismatch are much larger than those correspondingto a correct
association. :

For purposes of comparison, Fig. 9 plots the error statistic de-
veloped by Bar-Shalom® and Bar-Shalom and Fortmann? for both
a correct and an incorrect track association (using the same data
sequences that were used by the filters in Figs. 3 and 4). Note
that the chi-squared error statistic does not change much between
the matched and mismatched cases. We also noticed that there
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o " 50 i 100 150
time {sec)

Fig.9 Error statistic suggested by Bar-Shalons® and Bar-Shalom and
Fortmann®: (3 — %2)TE[R1 — 3,01 — %2716y — £2).

% 10

T
- pstimate using dala from both slations 1 & 2
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Fig. 10 Euclidean norm of error in tracking target 1.

were several instances where nearly singular matrices were inverted
in the algorithm that computes the covariance of the difference
between two local estimates.

Part of the reason for this difficulty is explained in Fig. 10, a
plot of the Euclidean norm of the estimation error. The solid line
correspondsto a MGEKF that uses measurements from both station
1 and 2, whereas the dotted line is from a filter that only used station
1 measurements. Any method that relies on estimates that only use
a single station’s measurements is subject to a large error. This is
not a huge concern for linear estimators, but the matrix PV defined
by Eq. (29) may not necessarily reflect this error.

>

‘We have also encountered cases where a single station measure-
ment MGEKF was divergent in the radial direction to the target, but
no such difficulties have appeared when data from two geograph-
ically disparate stations was used. One way of generating such a
divergent case was to decrease the maneuver colored noise auto-
correlation parameter o to '316 or below. We note that values of this
parameter below 2% correspond to slower maneuvers, a commonly
encountered situation.

VYL Conclusions

This paper describes residual-based techniques for solving the
radar track association problem for bearings-only measurements.
The association between the tracks at two stations can be deter-
mined by examining the residuals of a bank of MGEKFs. Once this
association is established, an algebraic parity test can find the cor-
respondencebetween tracks at other stations and targets tracked by
the first two stations.

One may ask why detection filters are necessary: Why not do
everything with algebraic parity tests? Although the detection fil-
tering step is not strictly necessary, it does improve the quality of
the track associations because the state estimates constructed from
two widely separated stations are so much more accurate than the
estimates from a single station.

To ensure the quality of the estimates from the MGEKFs, one
could delay the algebraic parity testing steps for associating tracks
from additional stations. If these parity tests are replaced with ad-
ditional detection filter banks until the estimates before and after
including a new station’s measurements are sufficiently close, then
the fidelity of the estimates can be guaranteed.
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ABSTRACT

Although the exact GPS solution proposed by Bancroft
is nonlinear, it may be manipulated into a linear form
when 5 or more satellites are visible. This linear form
is exact, as opposed to the linear solution obtained via
repeated linearization in the iterated least squares (ILS)
method. By virtue of this exactness, the solution of
the linear form is always the true user position, while
the ILS may converge to an incorrect solution (this is
especially common when the GPS user is in space).
When the measured psendoranges are noisy, the linear
structure ensures that the position estimate will converge
to the correct value and that the error covariance of the
estimate is known, guarantees that have not been found for
nonlinear estimators that use the Bancroft solution directly.
The conversion to the linear form excludes information
present in a single scalar nonlinear measurement equation.
We demonstrate several procedures for refining the linear
estimate with this remaining information. In addition,
we show that the methodology developed for direct GPS
solutions can be applied to create linear direct methods for
differential GPS problems.

1 INTRODUCTION

The purpose of the NAVSTAR global positioning system
(GPS) is to allow a user to accurately determine their
three-dimensional position. The system consists of a
constellation of satellites, each of which broadcasts a
predetermined time-varying code, known in advance by the
user. The user can thus calculate the delay between the
broadcast time from each satellite and the time of reception,
which translates into a pseudorange from the receiver to
that satellite. Since the positions of the GPS satellites
are accurately known, these pseudoranges can be used to
triangulate the user position. Because the user’s clock does
not align precisely with the clocks on the GPS satellites, the
measured pseudoranges are not true ranges, and therefore
the error between the user clock and GPS time must be
estimated in order to accurately determine the user position.

The pseudoranges are nonlinear functions of four
unknowns: the user position in three-space and the user
clock error. Determining the unknowns therefore requires
the pseudoranges from at least four non-coplanar GPS
satellites. In view of this restriction, the orbits of the
satellites in the GPS constellation were designed so that
most earthbound users view at least four GPS satellites at
any given time.

The most commonly used method for determining
the unknowns is an iterated least squares (ILS) method,
e.g. the one in Ref. [1]. This method amounts to a
gradient search procedure to minimize the error between
the measured pseudoranges and pseudoranges constructed
from the estimated unknowns.

If the pseudoranges are noiseless, one may solve the
pseudorange equations directly for the unknowns, as first
reported by Bancroft [2]. This direct method was later
refined and adapted to the case of noisy measurements
[3, 4, 5, 6]. The estimates obtained by each of these
methods all depend on the solution to a quadratic equation.

In this paper, we manipulate the measurement
equations into a linear form, which is not dependent on




approximate knowledge of the user position. It is thus a
direct method, but one that does not require the solution
of a set of nonlinear measurement equations. Although
Leva [7] has previously shown that such a linear structure
existed, he used it solely for the purpose of determining
when unique solutions to the GPS equations existed. In
this work, we exploit the linear structure to obtain better
estimates for systems with measurement noise.

The notation is as follows. The column vector S
denotes the position of the ith satellite in an inertial
reference frame, and the user position in the same reference
frame is a column vector denoted by x. The error between
the user’s clock and GPS time is denoted by At. This
clock error causes a bias of ¢cAt in all of the pseudoranges,
where ¢ denotes the speed of light. X £ [xT cAt]T
denotes the vector of unknowns for the GPS problem. The
operator < -, - > denotes the Euclidean inner product, and
the operator || - || indicates the Euclidean norm. E[-] is the

expectation operator. The number of GPS satellites visible

to the user is m.

A review of the ILS algorithm appears in the next
section, followed by a review of the direct solution in
Section 3. Section 4 describes our linear direct method.
An extension of this method is made to the differential
GPS problem in Section 5. Because the linear direct
method does not use all of the information present in
the measurements, we propose several methods in Section
6 to improve upon the linear direct method’s estimate
by using the information present in the scalar nonlinear
measurement equation that was excised in the construction
of the linear direct method. Section 7 compares the
accuracy of several direct methods operating on a simulated
data set, and Section 8 concludes the paper.

2 REVIEW OF THE ILS ALGORITHM

For the ith visible GPS satellite, the measured range from
the user to the satellite is given by

P9 = |I8® — x|| + cAt +7@. 6))

Let us denote f(S®),X) £ ||S® — x|| + cAt. When

equation (1) is linearized about nominal values of ,5?),
cAt, and x,, it becomes

8559 = F(8®, X)sX + 1, (&)
where

679 = 5 50 = 5 _ £(8® X,),  3)

§X - X - X*, (4)
: and
(O] A I\
F(s™,X) X lxex.’ 5)

The ILS algorithm proceeds as follows:

Algorithm 2.1 (ILS).
1. Setj=0. Let 5{0 be the initial estimate of X.
2. Set a convergence tolerance e.

3. Let W be the covariance of the noise vector 1 &
T
[?}(1) 7@ . ,?(m)] .

4. Compute F(S®, X ), i=1,2,...,m

5. Use the measurements pV,p®), ..., o™ and X to
compute 5pM),5p@ ... 8p(™) via equation (3).

6. Find the weighted least squares estimate of 6X using
the formula

6X = (FTWIF)"IFTW-15p, (6

where
P{l) F(S(E)aﬁj)
p2 o F2& F(8®,X;)

™ F(S(™, X))

7. Update the estimate using the relation X4, = X; +
0X.
8. If |6X| < ¢ the estimates have converged to within

the tolerance € and the algorithm can stop. If not, let
J=3j+landreturnto step 4.

Note that the initial guess X, and the convergence
tolerance ¢ determine the number of iterations that the
algorithm requires. If X is a bad guess, the algorithm may
converge very slowly.

3 REVIEW OF DIRECT METHODS FOR NOISY
MEASUREMENTS '

This section presents a brief review of the Improved Direct
Solution (IDS) developed by Biton, ef al. [6], which is
an adjustment of Bancroft’s direct method [2] to handle
noisy data. Begin with the equation for the measured
pseudorange from the user to the ith satellite

PO =118 x| +cat +179, Q)
or equivalently
I8® —x|| = 5D — cAt — 5 ®. ®)

Squaring this equation and rearranging terms yields

-2<8® x> 4y +25DcAt — (n®)2 +
2790 — 2Oeat = (O) — ISOIP, ()




where
X 2 I — (cAt)?. a0
Typical values ‘of the quantities in equation (9) are
1ISO| % 10"m,  ||z|| ~ 10°m,  cAt~ 10°m,
7® x 1m, 79~ 10"m.

If we ignore all terms in (9) that are smaller than 108
meters, we have

-2 <89 x> 4x+ 25D cAt 4 2507 =
)2 - I8P ap

‘We can assemble a vector equation by applying (11) to the
measurements from every satellite:

HX + Gn =R, + xRy, (12)
where :
—(SMHT 5
—(8NT 5@
maa| 7 7 13)
—(Sm)T  pm)
(B1)? — ||s™y2 -1
522 _ (1522 -1
2| @9 ‘il I R SN i BN
(B2 — |ISt™| )2 -1
G £ diag{25™,25?,..., 25}, (15)
n2p® 9@ . g7 s

Since G is invertible, equation (12) can be rewritten as
G 'HX +7=G R, + xG'R,. a7

Suppose that 77 were a zero mean Gaussian vector with

covariance V. If x was a known quantity, and if the a

priori estimate of X was the zero vector, and if the error
covariance of this initial estimate was infinite, then

X =[G BTV G H)!- ,
(GTH)TG(Ro + xRe) (18)

is the least squares estimate of X. Substitution of the
elements of X in (18) into the definition of x (10) results in
a quadratic equation in the unknown x (the coefficients of
this quadratic equation are independent of X and x, hence
the nomenclature “direct solution”). Substituting the two
solutions of this equation into (18) gives two candidates
for X. Only one of these candidates will satisfy the
measurement equation (12).

Note that for the noiseless case, the estimation
equation (18) simplifies to

X = [HTH]'H" (R + xRs), 19)

which is the estimation equation used in the original
Bancroft method.

4 THE LINEAR DIRECT EQUATIONS

The only nonlinear term in the vector measurement
equation (17) is x. We demonstrate the means to remove
this nonlinearity below. ’

The matrix G 'R is rank 1. Hence, a rank (m — 1)
matrix E exists such that EG‘ERg, = 0. In fact, there are
an infinite number of such annihilator matrices, with

i -1 ¢ 0

1 0 -1 0
E= G

1 0 0 -1

being an obvious example.  Multiplying the GPS
measurement equation (17) on the left by the annihilator E
creates (m — 1) completely linear exact GPS measurement
equations:

EG'HX + En=EG™'R,. 0)

Remark 4.1. If the noise vector 1 is assumed to be a zero
mean Gaussian with covariance V. £ E[nnT)], the single
epoch least squares solution of the linear measurement
equation (20) that minimizes the cost function

J =[EG'R, - EG'HX]|T(EVET)!.
[EG™'R, - EGT'HX] + XTM;'X (1)

is given by

X, = [HT(G™)TET(EVET)'EG'H+M; 1
HT{G—I}TET{EVET)-I .
(EG™'R. - EGT'HX,), (22)

where Xo is the a priori state estimate and My is the
(potentially infinite) a prioti error covariance. The error
covariance Pg £ E[(X — Xo)(X — Xo)T] of the estimate
is

Py = (HT(G™)TET(EVET)!.
EG'H+M;) ™\ (3)

Note that this error covariance will typically be larger
than that for an ILS estimate, since the projected
measurements have effectively double the noise of the
original measurements. Hence, using the estimate obtained
in (22) as the initial guess 5{@ in the ILS algorithm 2.1
would be a good strategy. Since Xy is very close to the
true position, the ILS algorithm should converge in a step
or two. Section 6 derives a similar method that gives even
better results.

If a state model is available, a Kalman filter can
be constructed for estimating the vector X. Assuming
that the measurement noise sequence 1 is an independent




and identically distributed (iid.) zero mean Gaussian
random sequence with covariance V, equations (22) and
(23) describe the update equations for such a Kalman filter.
Note that an extended Kalman filter is not required, as all
of the measurement equations are linear.

5 EXACT LINEAR SOLUTION OF NOISY DIF-
FERENTIAL GPS EQUATIONS

Suppose that we are interested in knowing the distance
Ax £ x; — x; between two receivers located at the
positions x; and xs. Let cA#; be the clock bias of first
receiver, and let cAf; be the clock bias of the second.
Define cAt;o as the difference between the two clock
biases, cAtyz £ cAty — cAt;.

For each satellite 7 that is visible to both receivers, -

there are two measurements available: A0 2 ||SG) —
x| + cAty + i and 55 2 |ISO) — x,| - [|SO) —
X1l] + cAtyz + 1;_%) Note that *qg and ?}%) are correlated,
but the magnitude of 1}?2) is less than that of nf) due to the
elimination of common mode errors from the differential
measurement. If 65 is a differential carrier phase
measurement, then ng} should be very small compared to

nﬁ‘), since carrier phase multipath is much smaller than
code multipath.
Proposition 5.1. The distance between the receivers Ax
satisfies the following equation for each visible satellite i:

~2 <S89 Ax > +{|xa||? — ||x1]1? + 25P Aty +
265D cAty +265F Aty — 2cAtycAtys — (cAtyn)? +
2793 —2cAt1an{? ~ 2m{ (3 ~2eAtin + 26503 -

(n{3)? — 2cAtian{Y = 250659 + (659)%. (24)

Proof. Begin by noting the identity

IS — xalf* =

(1S® — x| + (/18D — xa]| ~ [IS® — x4 )2 (25)

Expanding the quadratic terms on both sides vields

ISD]2 - 2 < 80, %, > +|Ixo[? =
ISDI? — 2 < 8D, %1 > +]jx |2 +
2/|8® —x;[|(lIS® — x| — [|SD — xy][) +
(II8® — x5]] - |89 — x4 )2 (26)

Now substitute the definitions of Ax, 5" and 55 into the
above expression and rearrange:

~2< 8D Ax > +||xo|? — [|x]]2 =
25 ~ cAty — )65 — cAtyy — D) +
(65 — cAtyy — ?Igiz))z- @7

Let us expand the terms on the right hand side containing
the clock biases, giving us

—2 <89, Ax > +|x||? - ||x1]? =
26 — D) (65D — cAtyy — ) —
2eAt;659) + 2t cAtr; + 2hty ) +
(659 — D)% — 2cAt12(65 — D) + (cAtz)?,  (28)
which can be rearranged as (24). o

We can assemble a vector equation by applying'(%)
to the measurements from every satellite:

H AX + Ggng + Reg = Ryg + xqRia, 29)
where

—(8MT 55 (5(1)+5§<1)}
—(8ONT 55 (5(2).;.55(2))

d =2 , (30)
—(SNT gpm)  (5m) 4 g50m)
®
7
Ax ,?%g)
AX 2 |cAty |, 2 |™ G1)
cAtis .
i)
Ga = 2diag{(6" + ™M), (3 + 65®), ... 32
(B + 5™},

RY) & _9cAti () — 20 — 2cA8,m8 —

. . 33
(1}?2))2 - ZCAtlgng, i=1,2,...,m
RY -1
RY -1
Ra2 | |, Ru2|.|, 04
R -1
250650 + (65)2
25D55@ 1 (552
Rad é AG}. 14 ) ( p } , {35)
2535 + (650m)?

xd & |Ix2l? = |Ix1]|? — 2cAticAt1s — (cAt1p)%. (36)
Proposition 5.2. AX, the solution to the vector equation
(29), satisfies the rank (m — 1) vector equation

E4G; HyAX + Eqny + E4G ' Reg =
EyG;'Ree, (37)
which is linear in the unknowns Ax, cAty, and cAtys.

Proof. As for the standard GPS case, there exists a rank
(m — 1) left annihilator Eq to the rank 1 vector G Ryg.
Multiply (29) on the left by EéG‘;l to obtain (37). O




Remark 5.3 (Approximate Linearity). Equation (37) is
already linear in the unknowns Ax, cAtys, and cAty. If
we make some mild approximations, we can remove the
nonlinearities in the noise terms. The elements in (37)
typically are of the following sizes:

[1S®|| = 107m, cAty =~ 10°m,

cAtys == 10%m, n@ ~ 1m, ng =~ lm,

A~ 10"m,

0m < ||Az|| < 107m, om < ||659]] < 10"m.

If we choose an unitary annikilator (ie. E&G‘;}'Rbé =
0, E4ET = I,,_:. Such an annihilator always exists.)
and ignore ali terms in (37) that are smaller than 10 meters,
we have

EqG;'H4AX +Egny = EsG;'Raq, (38)

which is linear in the unknown noises as well as in
Ax, cAtys, and cAty,. Note that this formulation
holds even for very long baselines. In contrast, the
linearization conventionally used for the measurement
equation introduces significant errors when the distance
berween the two antennas is larger than 100 kilometers
[8]. It should be noted that terrestrial differential GPS over
long baselines is still subject to larger noises than those
associated with shorter baselines, due to noncommon mode
ionospheric errors.

6 NONLINEAR CORRECTION

In the course of the derivation of the linear exact solution,
some of the information in the measurement vector
G~IR, is not used, namely the part of G~!R, that
is orthogonal to the projector E. This information can
be recovered by applying RY(G~1)T, the orthogonal
complement of E, to the nonlinear measurement equation
{17), which yields the following scalar nonlinear equation:

HX + Gn =R, + Ry, (39)
where

R, 2R](G™)TG'R,, (40)

Ry, 2R{(G™)TG™'R,, 1)

HART(GHTG'H, GAR](GH. @

Remark 6.1 (Independence of measurement noise).
Note that if the measurement noise 11 is assumed to be
composed of independent and identically distributed
zero mean Gaussians (ie. Eln] = 0, E[nn] = %)
then RI(G~1)Tn is uncorrelated to the noise in the
measurement equation (20):

E[En(R} (G n)T] = E[Enn"G™'Rs]  43)
=E(@*1)G™ IR, (44)
=o?EGIRT =0. (45)

This means in particular that RT (G~)Tn is independent

of Xo, the estimate based on the measurement equation
(20).

The independence of 5(3 and the noise in (39)
suggests several methods for adding a correction to
the linear estimate based on the nonlinear part of the
measurement equation. Some possible corrections are
a linearization of the nonlinear equations, a minimum
variance linear estimate based on the nonlinear part, a
maximum likelihood estimate based on the nonlinear part,
and a conditional mean estimate based on the nonlinear
part. The following subsections detail each of these
methods.

6.1 LINEARIZATION OF NONLINEAR PART

When linearized about X, equation (39) becomes

HX +7=R,, 6)
where
HA{H-R [3] oAk}, @7
2Ry (G (48)

Since # is independent of X, the updated estimate
that makes use of the linearized measurement equation (46)
is calculated using the standard least squares update

X= XQ + ngIT(fngﬁT + (0’210{13}—1) .
(R. -RY(G™)TG'Ra), (“9)
where R,, is the measurement corresponding to Xo:

(IIS* — %ol? + ko) — |81
(I1S? — %ol? + cAko)” — |22

Ife

R, (50

(II8™ — %ol[2 + cAto)® — ||5™|12

6.2 MAXIMUM LIKELIHOOD ESTIMATE USING
NONLINEAR PART

The a priori probability density function (pdf) of X given
by the linear estimate equations (22) and (23) is

1
@m)2[Pol'/2

exp{—%(x - Xo)TP; (X - X{}}}. 51

p(X) =

Our objective is to maximize the joint probability density
function of X and the measurement R,. By Bayes’ rule,




this joint pdf can be expressed in terms of the conditional

pdf
p(X, ﬁa) = p(fia|X}p(X}.

The conditional pdf we require is determined by using the
nonlinear measurement equation (39)

1
\/2_?75-'
exp{——(R -HX - R, XTQX)*}, (52)

P(ﬁa %X) =

where

5 £ Elii] = (G™'Ro)TEmmT)(G™'Ry) =
(GT'Ry)T(*1)(G™'Rs) (53)

and
1 00 0
010 0

Qé 0 01 0 64

0 0 0 -1

Then

» 1
p(X,R,) =

(27)5/25|Po|1/2 ’
1 ,. o o
exp{~ 523 (Ro — HX - RyXTQX)* -

-;-(x ~X)TP;I(X - Xo)} (55)

is the joint pdf that we must maximize with respect to

X. Clearly, maximizing p(X, Ra) above is equivalent to
minimizing the function

1 ,. o .
F(X) & 55 (Ro — HX - B, XTQX)” +

(X = X)TPG (X - Ko). (56

The maximum likelihood estimate can thus be
obtained by minimizing the function f(X) expressed in
equation (56). Note that f is not necessarily convex in
X, so this minimization problem may not be an easy
one. Since f is a smooth function, it is convex if and
only if its” Hessian is positive definite everywhere. The
relevant quantities to determine convexity and solve for the

optimum via a Newton-Raphson algorithm are

8 1« wo
o/ X) = — 55 (Re - HX - RyXTQX) -

(H +2R,XTQ) + &)

(X - Xo)"Pg?
2 % i s
3}{2 2 (X) = —z5Rs(Ro - HX ~ RyXTQX)Q +

o (B + 2R,XTQ)" (8 + 28%,X7Q)

Pyl
(38

6.3 CONDITIONAL MEAN ESTIMATE USING
NONLINEAR PART

In the previous subsection, the joint probability density
function p(X, Ra) was calculated. The density function
p(R) is given by

p(it) = f (X, R,) dX, 59)
and by Bayes’ rule, |
X|R,) =2 (Xiﬁ“}. (60)
P(X[R,) = )

Then the conditional mean is
{» 2]

BXIR) = [ XpXR)ax. @)
—00

This conditional mean estimate is the one we really
want, although the above integrals are difficult to compute.
Until these integrals are solved, the maximum likelihood
solution from the last section remains the best viable
alternative.

64 MINIMUM VARIANCE ESTIMATE USING
NONLINEAR PART

Let us describe the random variable X as
X =X, + AX,

where Xg is the a priori estimate generated using the linear
part of the measurement equations and AX is a zero-mean
Gaussian random variable with covariance Py. Then the
nonlinear measurement equation (39) can be expressed as

H(X, + AX) +
Ry(Xo + AX)TQ(Xo + AX) + G =R,, (62)
Or upon rearrangement as

H;AX + Ry(AX)TQ(AX) + G =R,,  (63)




where
:FII = I:I + 2&55(5{3, (64)
R; = R, — HX, - RyXT QX,. (65)

Given this measurement equation and the a priori
distribution of AX, the linear minimum variance estimate
of AX is

AX = E[(AX)RT]E[R,RT]™'R;, (66)

as demonstrated in [9]. Since we have already shfiwn that
AX is independent of the measurement noise G, the
expectations in the above equation are readily calculated:

E[(AX)RT] = P,HT ' 67
E[R,RT] = RZ{3(P%, + P, + P%, + P2,) +
4P%, 4- 2P Pyy + 4P%, +
2P11 P33 +4P3; + 2P, P33 —

4P%4 _ 2?11P44 - 4P§4 -
2PooPyy — 4P§4 - 2P33P4§} +
HPHT + GVGT,
(63)
where Py has been partitioned as

Pi; Pz Piz Py
Piz Py Pz Py
Py = . 69
O7 |Pi3 Py P33 Py 69
Pis Py Pay Py

~ 7 EXPERIMENTAL RESULTS

The techniques developed in this paper were tested via
Monte Carlo simulations. These simulations each used the
same real GPS satellite ephemeris data collected beginning
at 19:22:33.5 PST on Friday, October 13th 2000 at
(-2.5192459e+06 m, -4.6431270e+06 m , 3.5626325e+06
m) in GPS earth centered earth fixed (ECEF) coordinates.
Each simulation located the GPS receiver at a random
position, centered at (-2.519245%+06 m, -4.6431270e+06
m , 3.5626325¢+06 m) in GPS ECEF coordinates, with
standard deviation 1000 km. The noiseless pseudorange
measurements were calculated, then corrupted with zero
mean, 15 m standard deviation Gaussian noise. Thus,
a sequence of artificial measurements where the true
user position was known was available for testing our
methods. A series of 50 simulations was performed, each
simulation containing 1191 data points. The results of these
simulations are displayed in Table 1.

The Monte Carlo simulations we used were fairly
low fidelity, as they took no account of ionospheric
or tropospheric noise. To check the validity of our
results, we also ran a simulation on an Interstate

Table 1: Comparison of errors in Monte Carlo simulations

GPS solution method | mean error | error std. dev.
DS 32.7163 m 13870 m
IDSBIS 2 steps 327143 m 1.3869m
linear data only 581.0040 m 7674165 m
project, then linearize | 49.9955m 69.8273 m
project, then min. var. | 35.9738m 20.7965m
project, then max. lik. | 32.7148 m 1.3866 m

Table 2: Comparison of errors from GPS satellite
constellation simulator simulation

GPS solution method | mean error | error std. dev.
DS 343087 m 0.9417m
IDSBIS 2 steps 343196 m 09271m
linear data only 50.4577 m 252115 m
project, then linearize | 32.5180m 20597 m
project, then min. var. | 34.3197m 09271 m
project, then max. lik. | 34.3195m 09271 m

Electronics Corporation model 2400 GPS satellite
constellation simulator, collecting measurements with
an Ashtech model Z-12 GPS receiver. This simulation
followed the trajectory of an aircraft, initially located at
(962850.28547m, —5200816.32182m, 3563520.00371m)
in GPS ECEF coordinates, starting at 16:30:00 PST
on Monday, January 22, 2001. The corresponding
measurement sequence, which consisted of 1680
measurement epochs, was thus corrupted by true receiver
noise, as well as a good approximation of the tropospheric
and ionospheric noises. As with the Gaussian Monte
Carlo simulations, the true position of the antenna was
known, allowing precise calculation of the estimation
errors. The results of several solution techniques applied
this simulation appear in Table 2.

The linear method alone is not as accurate as
other methods, because all of the information in the
measurements has not been used. When the methods of the
1ast section are used, the results are of comparable accuracy
to those of Biton, ef al. In fact, the magnitude of the errors
of the maximum likelihood method differ from those of the
IDS only by millimeters.

The IDS scheme may be implemented in a recursive
fashion, which is called the “IDS-Based Iterative Solution”
(IDSBIS) in [6]. To our surprise, iterating the IDS failed to
notably improve the accuracy of the solution in our Monte
Carlo simulations, in contrast to the results reported in [6].
We speculate that this was due to the true Gaussian nature
of the measurement errors in these simulations, whereas
the real GPS measurements used by Biton ef al. were
corrupted by non-Gaussian noises.




8 CONCLUSIONS

This paper presents a direct method for solving the GPS
equations. For noiseless pseudomeasurements, the user
position can be determined by solving a set of linear
equations, without making any approximations. If the
pseudomeasurements are noisy, the equations are still
linear in the unknown position and clock bias, and the
nonlinearities in the noise terms are small enough to
be safely ignored. The solutions are applicable to the
differential GPS problem, as well as the single user GPS
problem.

The conversion to a linear problem is wasteful in an
information sense. That is, some of the measurement data
is not present in the exact linear solution. The position
estimate thus has a larger associated error covariance than
that associated with an ILS method that has converged
successfully. Of course, one cannot tell whether an
ILS solution has converged to the correct answer, so a
tradeoff has been made between certainty of convergence
versus precision of the estimate. We have presented
several methods for improving the linear estimate by using
the information not present in the linear measurement
equations. These techniques yield results on par with the
ad hoc procedure developed by Biton ez al. , while having
a more sound theoretical basis and better understood error
bounds and convergence guarantees.
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A residual-based scheme is presented for solving the radar track-to-track association problem using bean‘ngs:
only measurements. To accomplish track association between two stations, the residuals of a bank of nonlinear
filters called modified gain extended Kalman filters are analyzed. Once tracks have been associated between two
stations, tracks from additional stations may be associated with tracks from the first two stations by checking
algebraic parity equations. Traditional track association methods rely on the local stations’ estimated target
positionsand error variances. These local estimates may be quite inaccurate or even divergent when using bearings-
only measurements. Qur method bypasses this difficulty because our filters use raw data from multiple stations.
An example demonstrates that our methods yield results superior to those of standard methods.

1. Infroduction

UPPOSE that several spatially distributed radar installations

are each tracking several targets. Associating a given target to
its track at each of the radar stations is an important issue, which
the radar literature refers to as the track-to-track association prob-
lem. Suppose further that the stations use passive sensors that only
measure bearings to the target, without measuring range. In this pa-
per, we outline a strategy for solving this association problem by
analyzing measurementresiduals.

Bearings-onlyobservation functions fall into two special classes
of nonlinear functions, called modifiable and approximately mﬂd:-
fiable nonlinearities, which are defined as follows:

Definition 1. A time-varyingfunction f : R” — R? is called mod-
ifiable if there exists an operator A: R? x R* - R?*" such that for
anyx,xeR",

) = f@ = ALf(x), Bl(x — %) )

Definition 2. A time-varying function f :R" — R? is called ap-
proximatelymodifiable if there existsaregion D C R” and operators
A:R7 xR”— R?*" and £ :R" x R" — R"*” such that for any x,
€D,

F@O-fO=[A0@),D+Exx-DIx -3 (2)

where limy, gy 0 1€(x, x —DI/IA(f (), D] =0.

Song and Speyer’s modified gain extended Kalman filter
{MGEKF)' is a globally convergent, unbiased, nonlinear observer
for systems whose measurement functions are modifiable or ap-
proximately modifiable. In this paper; the observers we design for
bearings-only track association are MGEKFs.

An early attempt at solving the track-to-trackassociationproblem
was made by Singer and Kanyuck.? In their paper, they incorrectly
assumed that estimation errors local to each station were uncorre-
lated. Bar-Shalom,? Bar-Shalom and Fortmann,* and Bar-Shalom
and Campo® later corrected this error by accountingfor the correla-
tion between the local estimation errors due to the common process
noise of the target. Later researchers have integrated the problem
of track association directly into the process of separatingthe mea-
surements corresponding to actual targets from clutter®’ In all of
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these references, it is assumed that both range and bearings were
measured. In some of these references, the possibility of using a
MGEKF to handle the situation of bearings-only measurements is
mentioned, but none have a discussion of the details of such an im-
plementation, in particular problems associated with the asymmetry
of single station estimationerrors. Estimates based on bearings-only
measurements from a single station are especially uncertain along
the line between the target and the receiver. This uncertainty is re-
duced when measurements from physically separated stations are
used. Our method attempts to take advantageof this phenomenonby
using estimates constructed from several stations’ measurements.

The paper is organized as follows. We show in Sec. II that
bearings-only measurement functions are modifiable. (Prior results
only showed that they were approximately modifiable!) We then
demonstrate in Sec. III that incorrect associations between two
radar stations can be interpreted as sensor faults, so that a bank
of modified-gain fault detection filters can be used to determine the
track associations. Section IV contains the main result, an algo-
rithm for solving the bearings-only track association problem. The
applicationof this algorithm to an example in Sec. V compares our
approach to a conventional track association method. Section VI
concludes the paper.

In the sequel, inertial Cartesian coordinates describe the motion
of each target in three dimensions via the state vector

= {X‘ yt zZ¢ Xr }}f 2‘:: ¥ ¥ 2113‘ 3
and the dynamics of each target are assumed to be of the form
xk + D= AKX &) + Bow' (k) 4)

Note that we include an acceleration state to model maneuvering
target dynamics.

IL. Modifiability of Bearings-Only Measurements

Song and Speyer' showed that the azimuth angle az'e€
[~n/2, n [2) and the elevationangleel! € [—x /2, 7 /2) from station
s to target #, as shown in Fig. 1, are modifiable and approximately
modifiable, respectively. The region D in which the elevation angle
was approximately modifiable excluded an ellipsoidal region near
the sensor, making their algorithms difficult to implement for situa-
tions where the angular sensor gets close to the target, for example,
in the terminal guidance of a missile. We improve this situation
somewhat by introducing the new angle ¥! € {—x/2, 7/2) and de-
scribing the position of the target in terms of W! and ®! £ azt.
Note that ¥ can be calculated from az! and el! via the equation

Z tanel’
Y =1g ) — ~1 3
$ n (X;) tan (casaz;) ©

This section is devoted to proving that the measurement function
for ¥} is modifiable.

Let X be an estimate of x' and assume that the position of the
measurement station in inertial space, x, =[X, ¥, Z,], is known.
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X
Fig.1 Angles for target bearings.
Then X!, Y/, Z!, X!, ¥!, and Z! can be computed by taking the
difference between elements of X', ¥, and x,.

Suppose that station s measures the bearings of target ¢ with the
measurement vector z;. Define k;(x*) by

q):
By 2 [ ] =z Q)
. ‘;gt

5

The measurement residual correspondingto &, (x') is then
ko(x") — b, )
tan! (v, /X]) — ™ (7/%1) ] , [tan"la
) La-%z:/x:) —san*(rz':/f:)] o] o
Applying the trigonometricidentity
tan~'(a) — tan~'(b) = tan"'[{a — b)/(1 + ab)]

we obtain

(w:/x3) - (7:/%2)

tan~! ——
[tazr‘a] L+ (v /x:)(v:/ 1) ®
b L) e (23D - (Z/%)
1+ (z1/x1)(z:/ %)
YiXt —yrxe
taﬁ_l( 3 _S 3 _8)
tan~! o XXt + Y7t
Lan" ﬁ] = ZiX 7yt ®
m-—l(.—#—;&‘__‘)
XXt 217t
- Define
H(z) =
sin(®!) —cos(®!) 0 000000
sin(W!) 0 —cos(¥) 0 0 0 0 0 0

)

Let &2 X+, DA4/X+¥T), 42
VIXD?+(Z4)?, and D, =4, /[X! X! + Z!Z!]. Note also that
sin(W=2Z!/d,, and

sin{®)=Y!/d;, cos(®!)=X!/d;,

cos(¥}) = X| /d,. Therefore, we can express D, and D, as func-
tions of the estimates and measured angles:

Dy =Dy (g, %) = 1/[cos(®!) X! + sin(®:) 7]
D, = Ez(z;,i') = i/{ces(\lfs')f{i + sin(\if;)f:}

If we express the trigonometric functions in H(Z!), Dy, and D,

in terms of X!, ¥/, Z!, X!, ¥!, and Z', we can write Eq. (9) as a
functionofz{ and x:

Le(f;] - o1 0

5t

Finally, we can rewrite Eq. (11} as

mE [Ua(f'f) 1/5(:5:‘)] [D‘ o az(:,f)]

xH(Z)[x = —# +x,] : 12
and combine it with Eq. (7) to obtain A, (x') in modifiable form,
h(x") — B (X') =

Dy(z, %) tan~' (2!, )

0
alz, S:‘)
o Da(e, &) tan” (2, ¥)
bz, &)
xH(z)) ' — #1 (13)

where we have made use of the identity

a@)e 1= ]

Thus, we havereplacedthe elevationangleel?, from which Song and
Speyer® producedan approximatelymodifiable function with a new
angle W;. Like the azimuth angle ¢!, angle ! leads to modifiable
measurement functions.

IIl. Converting Incorrect Associations
into Sensor Faults

Suppose that station s can view several targets, indexed by i, and
measures the bearings of each target. Then each of these measure-
ments z; is generated by k,(x’), as in Eq. (6). Now suppose that
another station, using its local observations, generates a state es-
timate of one of the targets that station s views. This estimate %/
corresponds to x/, the true state of the jth target at station s, but
neither station knows the value of index j. Our goal is to determine
which of the tracks at station s is the jth one, using only {z'}, the
measurements local to station s, and ¥/, the other station’s state
estimate of one of the targets.

To this end, let us form the following error residual between the
estimate ¥/ and the measurementz!, making use of the result from
the preceding section:

Z —h®) = ) — b, @) = G, #¥)& ~F)  (14)
where from Eq. (13)

6(Z,#) =
Dy(z, %) tan' a(Z, %) 0
o(z, %) |
. Difet #) wr' e, #)

pld.%)
xH(z) (15)
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By introducing a zero term into the measurement residual, we can
rephrase it as

Z = k&) = h,(x') — b, &) 16)

7 — k@) =Gz, &) —#) an

4 k@) =GE,¥)e —F +x ~x)  (18)

7 —h,@) = 6(d, #) ! —#) + G, ¥) (& —x)) (19)
2 =) =Gz, ¥ — %)+ p¥ (20)

where pi £ Gz}, %/)(x — x7) represents the difference between
x' andx’ as a sensor fault. If i = j, we have correctly guessed the
associationbetween measurementand estimate, and there is no fault
(u =0).1fi # j, then 1/ #0, playing the role of a sensor fault in
the residual.

IV. Algorithm for Track Association
from Bearings-Only Measurements via Fault
Detection Filters

Supposethat there are § radar stations, with known inertial coor-
dinates, that make bearings-onlymeasurements in three-spaceof T
different targets. We assume that all measurements at each station
have been grouped as tracks of each target visible at that station
using conventionalmeans.*®? In this section, we propose an algo-

{ rithm for associating the tracks at all stations to their corresponding
targets.

Assume that each measurement station s is located at known
inertial coordinates (X, Y, Z,). Let ¥ denote a fault detection
filter’s estimate of the target corresponding to the ith track at the
first station. The bearings-onlymeasurementfunction for the station
s of the same target is thus

z —h,GEY) ~ G, ¥V —F) + Pl v @21)
where G(z/, ¥V} is given by Eq. 15 and the sensor noise is
v =N@©, V)

The approximatestructureof Eq. (21)isduetothereplacementof the
measurement function in G(-, -) with the actual measurement (see
Song and Speyer'). Note that, by default, u¥ =0,Vi=1,...,T.

The following algorithm, illustrated in Fig. 2, associates tracks
between stations.

Algorithm (track association):

Dileti=1. =

2) Run a bank of T detection filters that operate on data from
stations 1 and 2, where the jth filter attempts to detect g, . Each
filter is constructed using the dynamic detection filter procedure
given next. All but one of these detection filters should register a
fault. The track correspondingto the filter that detected no fault is
associated with z} . Without loss of generality, label this track z).

3) Foreachtrackzl,5=3,...,8,1=1,..., 7, perform the al-
gebraic parity test given subsequently. If the result of the parity test
is zero, then 2! is associated withz} and z5.

4)Hi<T,incrementi by | and gotostep 2. If i =T, we have
completed the track association procedure.

Note thatestimatesobtainedin step2 are usedin step 3. Therefore,
stations 1 and 2 should be chosen to maximize observability of the
targets.

Dynamic Detection Filter

For any estimator of x¥, the estimation residual determined by
the measurements z, and zJ will not converge to values near zero
unlessz} andzj correspondto the same target. One such estimatoris
the MGEKF! givenas

_,( YV ¥, ) i+ 1) = ARR"®) 22)
e Ty
BV 2 : . (k) — b2V (k)] .
-1 zlf — Zl’ r{} (;C) - zj(k} - k {fll(k)] (23)
tan m 2 2
aliggy — gli ij (i
From the results of the preceding section, the error residual of track * 0 =30 +K B E) : @
J atany station s, generated by targeti at station I, is given by Mik+1) = A@PIRAT k) + 0K) 25)
( YU —y, 1
{1 [ -m)/Ge—x)T G- x) {1+ [ - n) /(%= x)P | (%0 - x)°
Zi — 2,
[ = = 2]/5 2 0
i [1+1@-2)/ (& - x)P} (R - x)
haigy = ! P _y
-y, 1
[l /G T @ —x) [+ [0 - (o — P -
Zi ~ 7, 0
| [+ - 2)/ G- )T e - ey
0 00000 0
- = —— - 000000
{1+ - z)/ (35 - %) T} (R0 - x,)
(26)
0 0000
. = —— - 000000
AV T (e
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Fig.3 MGEKF residual for matching tracks.
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Fig.4 MGEKF residual for mismatched tracks.

reskiusl (radians)
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time (sec)
Fig. 5 Filtered MGEKF residual for matching tracks.

covariance 1072, and measurement noise with covariance 1}. These
estimates (Figs. 5 and 6) clearly show that the mean corresponding
to a mismatch looks nothing like that of the matched case.

After the tracks had been associated between the first two sta-
tions, algebraic parity tests attempted to associate the targets ob-
served by the third station relative to those observed by the first
and second stations. Two plots of residuals generated by the alge-

braic parity tests appear in Figs. 7 and 8. Again, the residuals for .

residual (radians)

time (sec)
Fig.6 Filtered MGEKF residual for mismatched tracks.

£
100 180
time {sec)

Fig.7 Parity test residual for matching tracks.

time (sec) 150

Fig.8 Parity test residual for mismatched tracks.

the mismatch are much larger than those correspondingto a correct
association.

For purposes of comparison, Fig. 9 plots the error statistic de-
veloped by Bar-Shalom® and Bar-Shalom and Fortmann* for both
a correct and an incorrect track association (using the same data
sequences that were used by the filters in Figs. 3 and 4). Note
that the chi-squared error statistic does not change much between
the matched and mismatched cases. We also noticed that there
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Table1 Radar station positions

Station x Position, y Position, z Position,
identification m m m
1 50 1 0
2 50,000 1 50
3 25,000 —-400 100
‘Em.::kx from
Teacki station ¥
- 1l
Tracks ___3] Bankof Bank of
from Dank ¢ Igebr
station 2 ——n!  filters Track from parity tests Track from
station 2 that station & that
best match best matck
track i, station! track i, station!
Fig.2 Track association procedure.
- - a3 = —!
K (ky = MY (lokT, ® [I:xu ®M? (R, T v {k)} on
o 4 G(zi k), ¥ (k)
G4 M.z, 2" 0] = o (28)
G(z k), % (k)
Pi(ky = {1 - K ()G|Z, (k). Zj k), 3 (1) ]} M7 (k)
x {1 - KT ®)G[Z 0, 2k, ¥ 0]}
+KI (VT R KDY (k) 29
where -
Vi (k) = diag{V*, V/} (30)

The weighted innovations process of the MGEKF,

V1 (6) = [y M GO gy + V7 (k)fr“f ® 6y

should be close to a zero-mean, unit variance white noise sequence
only if z} and z correspond to the same target.

Algebraic Parity Test

This testdeterminesifzl, $> 5> 2,T >1 > 1, is associated with
2} and z}, where z} and z} are already known to be associated with
each other. Suppose thatx!/ is the state estimate generated by ) and
z5. Then, if Z} is associated with the tracksz} and z,

- . 7t
vl 2 [};xu(k}&f”{k) T +V"(k)} {20 — b5 1)
(32)

should be close to a zero mean, unit variance white noise sequence.
Here, the approximate measurement matrix &,u 4, is computedin a
manner similar to the first two rows of the matrix in Eq. (26), but
referenced to (X, ¥;, Z;), the location of station 3, instead of the
location of the first station (X, Y;, Z,). The zlgebraic parity test is
simply to evaluate the parity equation (32).

V. Example
The track association algorithm presented in the last section is
applied to simulation data in this section. Three radar installations
were located at the positions given by Table 1, and two targets
were both modeledas ninth-orderlinear time-invariantdiscrete-time
systems with the dynamics

O =Fx(t) + Tw(n 33

where

{'9{}{}1{}{}{}30'
000010 0 0 0
000001 0 0 0
000000 1 0 0
FEi0 00000 0 1 0
000000 0 ¢ 1
0060000 — 0 0
0000600 0 —-o O
t_oesoaeee—a_

[‘900"

000

000

000

T£|o o0 o (34)

000

100

010

[_0@1_

and where w is a zero mean Brownian motion process with covari-
ancel; 3 anda= fg is the time constant for the first-order filters
that model target maneuvers as colored noise processes. We sample
this model at intervals of T =0.1 s to generate the discrete time

dynamics

x(k + 1) = Ax(k) + Bw(k) (35)
where

T .
A=ef7, B= f e Bdr, E[w(k)] =031
]

Elw(yw” (D] = L3 38 (36)
The targets began the simulation with the initial conditions
x(0) =[50 220,000 30,000 250 —1000 0 O O OF
x,(0) = [50,000 20,000 35,000 —250 1000 0 0 O O

This configuration corresponds to the two targets initially moving
directlytowardeachother, in a linethatalmostpassesthroughstation
2. In the simulation, they pass closest to each other at ¥ =99.2 5.
Each measurement station measures the angles ® and ¥/ to each
target at every sample time. These measurements are subject to
additive, normally distributed zero-mean white measurement noise
with standard deviation 1 deg. We assume that the measurement
noise is independentbetween sensors at all stations. Each MGEKF
begins with the a priori information

£9(0) = {25,000 120,000 32,500 0 ©¢ 0 O O OF
Pi_!({)) = 13? XIQXQ

Finally, we assume that the local stations were able to separate their
measurements from clutter perfectly using methods like those of
Reid® or Bar-Shalomand Fortmann,* or Fortmann and Bar-Shalom ®

Figure 3 plots the weighted innovations of a MGEKF that uses
measurements from stations 1 and 2 that correspond to the second
target, whereas Fig. 4 plots the weighted innovations of a MGEKF
that uses measurements that are mismatched. Note that the inno-
vations for the correct match appear to be a zero mean white noise
sequence, whereas the innovationsfor the incorrect match are larger
and are not white. To better observe the behaviorof these sequences,
theirmeans wereestimatedusinga Kalman filter (assumingthateach
element of the weighted innovation of the MGEKF was a measure-
ment of a process that had integrator dynamics, process noise with
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Fig.9 Error stafistic suggested by Bar-Shalom® and Bar-Shalom and
Fortmann®: (31 — 2)TE[(Z; — £2)G; — 22)7 1G4 — 32).
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Fig.10 Eudidean norm of error in tracking target 1.

were several instances where nearly singular matrices were inverted
in the algorithm that computes the covariance of the difference
between two local estimates.

Part of the reason for this difficulty is explained in Fig. 10, a
plot of the Euclidean norm of the estimation error. The solid line
correspondsto a MGEKF that uses measurements from both station
1 and 2, whereas the dotted line is from a filter that only used station
1 measurements. Any method that relies on estimates that only use
a single station’s measurements is subject to a large error. This is
not a huge concern for linear estimators, but the matrix PV defined
by Eq. (29) may not necessarily reflect this error.

We have also encountered cases where a single station measure-
ment MGEKF was divergentin the radial direction to the target, but
no such difficulties have appeared when data from two geograph-
ically disparate stations was used. One way of generating such a
divergent case was to decrease the maneuver colored noise auto-
correlation parameter o to -2% or below. We note that values of this
parameter below % correspond to slower maneuvers, a commonly
encountered situation.

V1. Conclusions

This paper describes residual-based techniques for solving the
radar track association problem for bearings-only measurements.
The association between the tracks at two stations can be deter-
mined by examining the residuals of a bank of MGEKFs. Once this
association is established, an algebraic parity test can find the cor-
respondence between tracks at other stations and targets tracked by
the first two stations.

One may ask why detection filters are necessary: Why not do
everything with algebraic parity tests? Although the detection fil-
tering step is not strictly necessary, it does improve the quality of
the track associations because the state estimates constructed from
two widely separated stations are so much more accurate than the
estimates from a single station.

To ensure the quality of the estimates from the MGEKFs, one
could delay the algebraic parity testing steps for associating tracks
from additional stations. If these parity tests are replaced with ad-
ditional detection filter banks until the estimates before and after
including a new station’s measurements are sufficiently close, then
the fidelity of the estimates can be guaranteed.
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ABSTRACT

In this paper, we present two statistical techniques
appropriate for the "validation” of integer ambiguities and
the detection of cycle slips. The multiple hypothesis
Wald sequential probability ratio test (SPRT) can find the
conditional probability that each set of integer biases under
consideration is the true bias condition. The multiple
hypothesis Shiryayev SPRT determines the conditional
probability that the integer biases have jumped from the
nominal bias condition to each member of a collection
of other bias conditions. Hence, the Wald SPRT is a
method for validating the integer ambiguities during the
initial ambiguity resolution, while the Shiryayev SPRT can
be used to monitor for cycle slips.

Each of these multiple hypothesis SPRTs (MHSPRTs)
makes use of two measurement residuals. One is geometric
combination of the carrier phase measurements, and
the other is generated by differencing the carrier phase
measurements with code measurements.

Prior work on cycle slip monitoring has focused solely

on the detection of the occurrence of a cycle slip in the
fastest time, balanced against the probability of issuing a
false alarm. Once a disruption has occurred, the ambiguity
resolution process must restart from scratch. The Shiryayev
SPRT bypasses this problem, as it announces the location
of the biases after the jump, in addition to the time of the
cycle slip.

The calculations for the MHSPRTs are not linked’
to any particular distribution, unlike prior efforts. Only
the probability density functions of the measurement
residuals are required. Hence, the techniques can correctly
compensate for non-Gaussian errors in measurement such
as multipath.

For each hypothesis under consideration, the MH-
SPRTs yield the probability of that hypothesis being the
correct one. The "state” of the MHSPRT recursions is the
vector of all of these probabilities. Information from past
measurements is embedded in this state. This recursive,
probabilistic framework makes it very straightforward to
add new hypotheses into the set of possible bias conditions
while retaining information from prior measurements.

Results from successful simulations and field ex-
periments are presented, showing the efficacy of our
techniques.

1 INTRODUCTION

This paper describes new techniques for resolving a par-
ticular problem inherent in determining relative positions
using the Global Positioning System (GPS). GPS was
originally designed to determine the positions of antennae
relative to the Earth, but when one is interested only in
the positions of two antennae relative to each other, more
precise “differential GPS” (DGPS) methods may be used.
The most precise DGPS method is carrier phase DGPS,
which measures the difference in the phase of the GPS
carrier signal between two receivers. To create a relative
position estimate using carrier phase GPS, the unknown
number of full cycles of the carrier signal (the “integer



ambiguity”) between the GPS receivers must be found and
added to the differential phase. Standard least-squares
estimation techniques generate floating point estimates of
the integer ambiguity that can narrow the space of cycle
numbers that must be searched in order to calculate ranges
accurately. The small number of unknown cycles that
could correspond to the error in the floating point estimate
comprise the set of biases from which the integer ambiguity
resolution algorithm must choose. This paper proposes
several new algorithms for integer ambiguity resolution
and cycle slip detection based on two statistical tests —
the multiple hypothesis Wald probability ratio test and the
multiple hypothesis Shiryayev probability ratio test.

There are several methods currently in use for
resolving the integers, of which Teunissen’s least-squares
ambiguity decorrelation adjustment (LAMBDA) method
[1, 2] is the most popular. The other commonly used
integer resolution method is the ambiguity function method
of Counselman and Gourevitch, and its’ variants [3, 4, 5].
Both of these methods generate estimates of the differential
position in the process of determining the integers. In
contrast, the method recently developed by Park, et al. [6,
7] eliminates the differential state from the residual they
use to determine the integers. We will use this residual in
our development, since it’s independence in time makes it
valuable for statistical tests.

All of these prior methods use either Chi-squared tests
or F-tests, so they all can potentially benefit from the more
sophisticated recursive statistical methods described in this
paper.

Mertikas and Rizos [8] have developed a scheme for
detecting cycle slips in carrier phase GPS measurements.
In their paper, they apply the CUSUM test {9, 10] to
the residual of a Kalman filter in order to detect cycle
slips. In order for this scheme to work, they must assume
a dynamical structure for the integers that is somewhat
artificial. Also, while their method will announce when a
cycle skip has occurred, it cannot determine the position of
the new integer bias. Once a cycle slip has been detected by
their methods, a new integer ambiguity search must begin.

In contrast, the cycle slip detection methods we
propose in the next sections explicitly announce the new
integer ambiguities, as well as the time of the cycle slip.
The only assumption about cycle slips that we make isan a
priori probability of a slip, which is far less of a leap than
constructing dynamics for the disruption. The statistical
tests we use are also more computationally efficient than
CUSUM. As with our methods for determining the initial
integer ambiguities, the residual we analyze requires
no estimation of the relative position between the GPS
antennae.

The paper is summarized as follows: The Shiryayev
and Wald multiple hypothesis sequential probability ratio
tests are derived in Section 2. The improved integer
resolution algorithm is presented in Section 3. Section 4

presents a residual that enables the designer to increase
computational efficiency in exchange for longer sampling
periods. A similar residual, presented in Section 5,
allows the integer ambiguity associated with a newly
acquired satellite to be rapidly determined when the other
integer ambiguities are already known. Section 6 contains
experimental results using data from simulations and from
actual GPS measurements. The paper concludes with
Section 7.

2 MULTIPLE HYPOTHESIS SEQUENTIAL PROB-
ABILITY RATIO TEST

In this section we present two sophisticated statistical
tests for determining the most Hkely event from 2 set of
hypotheses. The multiple hypothesis Shiryayev sequential
probability ratic test (MHSSPRT) detects jumps from a
base hypothesis to another hypothesis in the set. The
muitiple hypothesis Wald sequential probability ratio test
(MHWSPRT), which is a special case of the MHSSPRT,
determines the most likely event from a set of hypotheses,
assuming that the event is true for all time.

The MHSSPRT and MHWSPRT can be applied
in place of the Chi-squared test in [6, 7. The
MHWSPRT yields somewhat better convergence times
than Chi-squared, and the MHSSPRT allows one to

- monitor for cycle slips. However, the best improvement

comes when these tests are applied to the enlarged residual
presented in the next section.

The material in this section is adapted from the work
of Malladi and Speyer [11].

2.1 RECURSIVE RELATION FOR SHIRYAYEV
SEQUENTIAL PROBABILITY RATIO TEST

Suppose that we have a set of different hypotheses
{Ho,H1,Ha,... Hm}. We wish to know if there is a
transition from the base hypothesis H; to any of the other
hypotheses, and the time that the transition occurs. We
will derive a recursive formula that at each time step
computes the probability that a transition has occurred to
each hypothesis, given the measurement residual sequence
up to that time.

Let us define the following notation in this section:




r(k) Measurement residual vector at time k.
R(k)  Measurement residual history up to time k.
8; Time of transition to hypothesis H;.
&i(k) Event {6; < k +1}.
Fi(k)  P(6; < k|R(k)).
s P (5, < G}
Ps A priori probability of transition to
hypothesis H; fromtime ktok + 1.
fi() Probability density function of r given H;.
Fo(9) Probability density function of r given H.
m+1 Number of hypotheses.
(k) P(6: <k+1[R(K)).

We assume that the measurement residual sequence
{r(k)} is conditionally independent, i.e. the measurement
residual sequence is independent once a disruption occurs.
We also assume that the probability distributions of r(k)
given H; are known for every i. In particular, all of the
probability density functions f;(-) are known.

We will derive a recursive relation for Fi(k), i =
0,1,2,...,m.

Note first that there is a simple relation between ¢; (k)
and F;(k) fori > 0:

(k) = P(6; < k+ 1{R(k)) M
= P(0; < kR(K)) + P(6; = k+ 1[R(E)) (2)
= P(6; < k|R(k)) +

P(6; = k+1]6; > k, R(K)) - 3)
P(6; > k|R(K))
= Fy(k) + 5 - (1 - Fy(k)). @

Computing ¢o{k) is slightly more complicated. Define the
set of events {&;(k)} so that &;(k) is the complement of
Ei(k) fori = 1,2,...,m. If we assume that the events
{&:i(k)} are independent of each other, the probability of
no transition before time k + 1 is given by

do(k) =1 — P(gsi(k)lR(k)) ®)
= p( éé,f (k)IR(k)) 6
- f[lf:(&@e)m{k» &
_ ﬁ{z _ PER)R(E)} @®

I

ﬁ{z —PO; <k+1R(F)} )
i=1

TT4 - 4 10

i=1

Lemma 2.1. Fi(k + 1) is a function of Fi(k), j =

0,1,...,m in the following manner:

) SktD)
Sro 8k + 1)

Proof. By induction. We begin by showing that

Fi(k+1) =

 _ _ #:(0) - fi(x(1))
F=sr g0 rey @
By Bayes’ Rule,
(1) = P(6, - P16 <1)
A= FOS ) = Spegs
_ P <1)- P < 1)
B P(x(1))
P() =) Pr)l6; <1)-P(6;<1) (14
j=0
$(0) = P(6; < 1|no measurements)
’ = P{@; <1) Vi ‘ a3

Also,

P(y(D)l6; <1) = f5(r(1))-dr(1) V5.  (16)

Hence,

P(r(1)[6: <1)-P(6; <1)
P(r(1))
fie() -dr(1) - 4:(0)
Ym0 Fi(x(1)) - dr(1) - 4,(0)
fi(x(1)) - 4:(0) an
Pieo Fi(x(1)) - 6;(0)

We next show that if we know {Fy(k),
Fy(k),...Fyr(k)}, then

E@M) =

Fk+1) =
$i(k) - fi(r(k +1))
im0 $5(k) - £i(x(k + 1))
which is a function of {Fo(k), Fi(k),...Fp(k)} via the
relations (4) and (10). Atstage k + 1,
Fy(k+1) = P(6; < k+1|R(k+1))
_ PR+ <k+1)-P; <k+1)
N PRk +1))

Yk >0, (18)

(19
PR(k+1)) = P(r(k + )|R(K)) - P(R(K)) (20)
PR(K)|6; <k+1) =

P(6; < k+ 1|R(k)) - P(R())
P6; <k+1)

@n




P(r(k+1)|6; <k+1)=
file(k+1))-dr(k+1) Vi (22)

We now use the conditional independence of {r(k)} to
write

Fi(k+1)=P(6; <k+1R(k+1)) =
1 N
PREFD) TEEFDIE k1)

PR(k)|6; <k+1)-P6:; <k+1). (23)

Substituting from (20) to (22) into (23), we have

1
P(r(k+1)[R(K)) - PR(F))
file(k+ 1)) -dr(k+1)-
P(6; < k+1|R(K)) - P(R(K))
PO:; <k+1) ’
P#:; <k+1)
1
= PaG+ DRy eE+D)- 25)
dr(k +1) - P(6; < k + 1|R(k))
_ file(k+1)) -dy(k +1) - u(k)
P(y(k +1)|R(k)) '

Fi(k+1)=

24

(26)

Now,

P(r(k + 1)|R(k)) = fjp(r(k +1)j6; <k+1)

=0 @7
. P(6; < k +1[R())
= j;fj(i‘(k-i‘ 1)- 28)

dr(k+1) - ¢;(k),
s0 we can substitute into (26) to get

fir(k + 1)) - ¢i(k)
Yjmo fi(r(k+ 1)) - ¢5(k)

Our induction is thus complete. (]

Fk+1)=

(29)

2.2 RELATION TO A MULTIPLE HYPOTHESIS
WALD SEQUENTIAL PROBABILITY RATIO
TEST

If we restrict ourselves to the case where one hypothesis
is correct for all time (i.e. we will never jump from
one hypothesis to another), we reduce fo the Wald [12]
sequential probability ratio test:

Fy(k) - fu(r(k +1))
Y=o Fi(k) - f3(e(k + 1))

Fy(k+1)= (30)

$i(k) = Fi(k) +pi- (1= Fi(k)), i #0
| Golk) =TI {1 - 4a(k)} -

X — éiik!'fi’gr!;ﬁ’*-iﬂ
F"(k + 1) - }'f__o ¢ (k) Fi(r(k+1))

Table 1: Summary of Shiryayev sequential probability ratio
test

This is quite easy to show. Because there are no
hypothesis jumps, p; = 0 for all 4, so
¢i(k) = Fi(k) + 5 - (1 - Fy(k)) = Fi(k) (3D

for all # > 0. Also, set of events {£;(k)} is now
mutually exclusive since the entire measurement sequence
corresponds to a single hypothesis. Hence

) =1-p(JawRre) o

S1-Y PEWRE) 69

=1-) ¢i(k) G4
i=1

=1- fj&(k) (35)

. i=1

= Fy(k). (36)

Thus, the recursive expression from the previous
subsection becomes

$i(k) - fi(r(k +1))
o 3 (k) - fi(x(k +1))
__ F)- fie(k +1))
Yieo Fi(k) - fi(e(k + 1))

Fik+1)=

@7

(38)

3 AN IMPROVED METHOD FOR INTEGER AM-
BIGUITY RESOLUTION

In this section we propose applying the statistical tests of
the last section to an enlarged residual that uses both carrier
phase and code information.

The method we propose may be used on either single
or double differenced GPS pseudoranges. For simplicity,
we will derive the method on double differenced data.
The conversion of the method to single differenced data is
straightforward.

Let us begin with the linearized carrier phase and code




measurement equations:

VAG(k)A = VH(k)sx(k) — AVAN + V., (k),
(39
Vép(k) = VH(k)x(k) + Vilcoge (K), (40)
where V7, and V1, are independent zero-mean

Gaussian random sequences with variances VV,,, and
VViodes 1eSpectively. We can eliminate the terms

dependent on éx by subtracting the code measurement .

from the carrier phase measurement, yielding the following
relation:

rl(k) 2 VAG(k)A — Vép(k) =
v’?ca.r. (k) - V’?code{k) - AVAN- {41)

Note that r! is an independent Gaussian random sequence
with mean —AVAN and variance (VV eer. + VVeode).

Following the methodology of Park, ef al. [6, 71,
we can find an E(k) that is a left annihilator of VH(k).
Multiplying the carrier phase measurement on the left by
E(k) , we arrive at

r?(k) £ E(k)VAGk)A =
E(k)Vn,,,. (k) — AE(K)VAN. (42)

Then r?(k) is an independent
Gaussian random sequence with mean
. —AE(k)VAN and variance E(k)VV . (k)ET (k).
Construct the vector r(k) as follows:

_ [F1(R)] _ [VAS(K)A - Vép(K)
r(k) = [ﬁm} [ E(k)VAG(k)A }‘
{Vnw. (k) — Vcoge (k) — WAN] @3)
E(k)Vnar. (k) — AE(K)VAN |

Then r(k) is an independent Gaussian random sequence
‘with mean m,.(VAN, k) and variance V,.(k) given by

m,(VAN, k) = [_ AE(K)VA 4
VV ae(k) + VViar (k)
V. (k) = [ ei?(é)v)'vw.(k) ..
VVear. (K)ET (k)
E(k)VVear. {fc)ET(k)} ’

—-AVAN
N

45)

Our proposed algorithm for integer ambiguity resolu-
tion is simply to apply MHWSPRT or MHSSPRT to r{k),
with the hypothesis set {H;,Hs,... Hm} containing all
of the values of VAN that are under consideration. We
outline it in detail below.

Algorithm 3.1.

1. Determine the values of {VAN;}, i = 1,2,...,m
under consideration as hypotheses. This can be
done either by taking a set number of integers away
from the code position estimate for each satellite,
or by dividing the satellites into an independent and
dependent set as in Park et al.

2. Initialize the probabilities F;(0) to their a priori
values (For MHWSPRT, usually 1/m, where m is
the number of hypotheses under consideration. For
MHSSPRT, usually 1 for the base hypothesis and 0
Jor the other hypotheses). Set k=0.

3. Take the (k + 1)th measurements VAq:‘;(k + 1) and
Viplk +1).
4. Evaluate fi(r(k + 1)) fori = 1,2,...,m as follows:

file(k +1)) = exp{ri(k + 1)V, (k + D)r;(k + 1)},

where
Hk+1)
rilk+1)= [l"( ] N
k1) =|b0 1 1)
and
ri(k+1)=
VA¢(k +1)A — Vip(k + 1) + A\VAN;,
rZk+1) =

E(k+1)VA¢(k+1)A+AE(k+1)VAN;(k+1).

Note that since ali the hypotheses under consideration
have identical covariances, the constant term preced-
ing the exponent has been eliminated in the above
expression.

5. Calculate { Fi(k + 1)} using {F;(k)} and {fi(r(k +
1)} with either MHWSPRT or MHSSPRT, depending
on whether we are determining the initial ambiguity
or monitoring for cycle slips.

6. Ifwe reach a desired threshold with any of the { Fi(k+
1)}, declare the initial integer ambiguity and begin
monitoring for cycle slips (MHWSPRT) or declare a
cycle slip and reset the base hypothesis (MHSSPRT).

7. Go to step 3.

For pedagogical reasons, we have used conventional
L1 code pseudoranges in constructing the residual r!(k).
It is better in practice to use narrowlane code pseudorange
combinations instead, because the combination of widelane
carrier pseudoranges and narrowlane code pseudoranges

yields a residual that contains no errors from ionospheric
delay [13].




4 RESOLVING INTEGER AMBIGUITIES SEPA-
RATELY

A key problem with the integer ambiguity resolution
scheme we have presented, as well as with algorithms of
the type proposed by Park ez 4l. , is that the number of
hypotheses that must be considered is large, as a result
of the combinatorial relationship between the number of
satellites and the number of integers to be examined per
satellite. We propose a technique to alleviate this problem
below.

Our approach attempts to construct residuals such that
each residual is only affected by the integer ambiguity
of a single satellite. Then the integer ambiguities of the
satellites may be determined in parallel, with each parallel
element making a choice from a small number of possible
hypotheses.

Consider the carrier phase and code measurement
equations again: ‘

o] - (et ) [+

e @] @0

Suppose that we are only interested in the jth integer
ambiguity VAN | If we exclude measurement equations
with any of the other integer ambiguities, the equation
above reduces to )

VAN (k)A] _ [VhD) (k) 3
[ vepk) |~ | vEE) | VE)
1 § v (7) (k)
AN { K ] 4
[3} v * v’?coufe{k) @D
Denote by EU) (k) the left annihilator of the matrix
Vh) (k)
VH() |-

Multiplying (47) by EU) (k) on the left yields

L) 2 O (x) [VASD (R)A] _
(250 | Vi(k) ]
Gy [ VISR (R)] _
B {k) [V’?mde(k)]

EO (k) {{1)] VAND).  (48)

Hence, r)(k) is a noise process, with distribution
determined by the integer ambiguity VAN and the
joint distribution of 7, and 1,,4,. The residual r(? (k)
can thus be tested with a MHSPRT to determine which
hypothesis is the correct value for VAN, independent
of the other integer ambiguities.

S A RESIDUAL FOR RESOLVING THE INTE-
GERS OF NEWLY ACQUIRED SATELLITES

If the integers corresponding to a number of satellites
have been resolved and a new satellite comes into view,
resolving the integer ambiguity of the new satellite is
especially easy. Let VAN € R(-1) pe the vector of
resolved integer ambiguities corresponding to the carrier
phase measurement vector VAgp(k) € RM-1) The
carrier phase measurement corresponding to the new
satellite is VA#(M)(k), and the integer ambiguity we seek
to resolve is VAN, The measurement equations can
then be written as

VAgM) (k) _ [ )
[(Vé(ﬁ(k) + VAN))J - [ H(k) ] Véx(k) +

_ M)
[ 01} VAN®D 4 {’?g‘"] . @9)

ear.

Construct a measurement residual r*) (k) by multiplying
(49) by EM)(k), the left annihilator of the matrix

=l

R VA (K
M (k) £ EM) (k) {(VA:;S(R:) + V(’A)N}A] -

(M) _
EM (k) @m] +EM) (k) [ 011 VANM) (50

car.

The measurement residual r(*)(k) is a random noise
sequence, with distribution determined by VAN(M)
and the joint distribution of n$*) and n,,,. Taking
advantage of the small number of possible hypotheses
under consideration and the low noise associated with
rM)(k), a MHWSPRT can quickly determine the correct
value of the new integer ambiguity VAN,

6 EXPERIMENTS

In this section, we evaluate the performance of the methods
derived in the previous sections.

6.1 STATIONARY SINGLE ANTENNA EXPERI-
MENT

‘We first constructed an experimental apparatus in which the
integer ambiguity was known. We connected two Ashtech
model Z-12 GPS receivers to a single Sensor Systems
model 867-1575-96 L1/L2 active antenna, so that the
integer bias was known to be zero for every carrier phase
measurement. We then compared the results of a Wald
test using the residual (43) to those using the carrier-only
residual (42).




The data sequences we measured contained observa-
tions of at least seven satellites. To test the algorithm,
we eliminated some of the measurements, so that there
were either five or six visible satellites visible. These
reduced data sets were double differenced and widelaned,
and then processed by the integer ambiguity resolution
algorithm. With either residual, the algorithm always
correctly concluded that the integer biases were zero. We
have plotted the time history of the maximum valued F}’s
for both the five and six satellite cases in Figures 1 and 2.
Note that while the addition of GPS code measurements
only slightly improves the convergence in the six satellite
case, the improvement in the five satellite case is quite
significant.
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Figure 1: Comparison between different residuals: Maxi-
mum value of F; vs. time, 5 satellites visible
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Figure 2: Comparison between different residuals: Maxi-
mum value of F; vs. time, 6 satellites visible

Finally, we looked at the performance of the Wald

test applied to the error residual in (41). Using the same
original measurement sequence, we reduced the number of
visible satellites in the data to four before processing them.
In this case, the correct hypothesis was not determined until
after 75 measurements, due to a large excursion that one of
the code measurements took from its mean. In Figure 3
we plotted the time history of the most probable hypothesis
(the correct hypothesis number in this case was 14). In
Figure 4 we plotted the time history of the maximum valued

Note that when our algorithm assumed that the
standard deviation of the code measurements was 1 meter,
the Wald test told us that it was 100% sure that an incorrect
hypothesis was correct! To avoid this overconfidence
problem in our algorithm, we increased the standard
deviation of the code measurements to 2 meters. While this
did not decrease the time at which the correct hypothesis
was declared the most probable, it did avoid the problem of
declaring the wrong hypothesis correct.
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Figure 3: Most probable hypothesis vs. time, 4 satellites
visible. The correct hypothesis number is 14

6.2 DYNAMIC TESTS

In this subsection, several different techniques for resolving
integer ambiguify were applied to the same data set.
The GPS data was collected using a test rig in which
two Sensor Systems model 567-1575-96 L1/L2 active
GPS antennae were placed a fixed distance from each
other (2.3 meters). The test rig was mounted to a car,

which was driven at moderate speed for several minutes

while the GPS measurements were recorded from Ashtech
model Z-12 GPS receivers. The results of the integer
ambiguity resolution schemes could be readily verified,
as filtering of the code measurements using the resolved
integers generated a distance estimate between the two
antennae, which would not match the true distance unless




slep number
Figure 4: Maximum value of F; vs. time, 4 satellites visible

the resolved integers were comrect. The experimental
data was collected beginning Friday, October 13, 2000 at
19:22:33.5 PST. '

6.2.1 WALD TEST USING MULTIPLE CARRIER
MEASUREMENTS AND MULTIPLE CODE
MEASUREMENTS

A Wald test using a residual generated by 5 double
differenced widelane carrier measurements and 5 dou-
ble differenced narrowlane code measurements quickly
resolved the correct integer ambiguities. There were
five integer values under consideration for each double
differenced carrier measurement, for a total of 5° =
3125 different hypotheses. The noise in each of the
single differenced widelane carrier phase measurements
was assumed to be a zero mean Gaussian white noise
process with a 24/2 cm. standard deviation. The noise in
each single differenced widelane code measurement was
assumed to be a zero mean Gaussian white noise process
with a /2 m. standard deviation. Figure 5 shows the time
history of the probability of the most probable hypothesis.

6.2.2 WALD TEST USING A SINGLE CARRIER
MEASUREMENT AND MULTIPLE CODE
MEASUREMENTS

When a Wald test was performed using the residual (48),
the correct integer ambiguities were again resolved, albeit
more slowly. The residual for each integer ambiguity
used a single double differenced widelane carrier phase
measurement and as many double differenced narrowlane
code measurements as were available at each epoch
(between 5 and 7). There were 9 integer values under
consideration for each satellite. The noise in the double
differenced carrier measurement was assumed to be a zero
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Figure 5: Maximum value of F; vs. time, residual uses 5
double differenced carrier and 5 double differenced code
measurements

mean Gaussian white noise process with standard deviation
242 cm. The noise in each double differenced code
measurement was assumed to be a zero mean Gaussian
white noise process with standard deviation 2 m. Figure
6 shows the time history of the probability of the most
probable hypothesis for one integer ambiguity, a pattern
that was typical for all the ambiguities for which we
searched. The price of the convenience, simplicity and
low computational cost associated with evaluating the

ambiguities separately was slower convergence of the Wald
test.
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Figure 6: Maximum value of F; vs. time, evaluating integer
ambiguities separately




6.2.3 SHIRYAYEV TEST USING MULTIPLE CAR-
RIER MEASUREMENTS AND MULTIPLE
CODE MEASUREMENTS

Since there were no cycle slips in the observed data, we
artificially introduced one into the measurement sequence
in order to test our cycle slip monitoring scheme. We
injected the cycle slip into one of the carrier phase
measurements at the 100th epoch. We then ran a Shiryayev
test on the same residual as before, using the integers
resolved by the Wald test as the nominal hypothesis. The
assumed standard deviation of the carrier measurements
was increased to 8 cm., as lower values made the test
too eager to declare a cycle slip. Figure 7 shows the
time history of the most probable hypothesis. The correct
hypothesis number is 313 before 100 samples, and it is 312
after 100 samples. Figure 8 plots the time history of the
probability of the most probable hypothesis. The Shiryayev
test detected that a cycle slip had occurred immediately, but
it took 30 samples until it identified the correct hypothesis
as the most probable one, and an additional 20 samples
until the probability of that hypothesis was near 100%.
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Figure 7: Most probable hypothesis vs. time, correct value
is 313 before 100 samples and 312 afterwards

7 CONCLUSION

This paper outlines the integer ambiguity problem for
GPS and describes some new methods for resolving the
integer ambiguities and for detecting cycle slips. The
main contribution is the application of the Wald and
Shiryayev multiple hypothesis sequential probability ratio
tests (MHSPRT) to dynamically compute the conditional
probabilities of members of a set of integer hypotheses be-
ing correct. Since the MHSPRTS require evaluations of the
probability density functions of the measurement residuals,
the expressions we constructed for the probability density
functions of several residuals are also of interest. A large

i i 2 i i : £ ;.
o 20 40 80 0 120 140 180 180 200

100
sample number

Figure 8: Maximum value of F; vs. time, cycle slip occurs
after 100 samples

number of experiments, performed on both simulations and
actual GPS measurements, demonstrates the effectiveness
of our methods.

Although there are many other methods for identify-
ing the initial integer biases and for detecting cycle slips,
the methods presented here possess several advantages
over their peers. Chief among these advantages is the
presentation of information about the integer hypotheses in
a probabilistic framework, instead of the cumulative sum
approach used by competing methods. This probabilistic
framework allows for easy accommodation of events such
as the introduction of new hypotheses. Other advantages
of our methods are cycle slip detection that automatically
determines the new integer hypothesis after the slip (rather
than simply announcing that a cycle slip has occurred),
provisions for the easy accommodation of non-Gaussian
measurement noises, and efficient computation due to the
recursive nature of the MHSPRTS.

The most significant disadvantage of our method is
that only a finite number of hypotheses may be considered.
Further, the computational cost increases as the number
of hypotheses increases. We have presented a residual
that drastically limits the number of hypotheses under
consideration, but the price is an increase in the noise of
the residual. This provides a GPS receiver designer with
the option of trading between the computational load for
each epoch versus the number of epochs of data required to
accurately determine the integer ambiguities.

In closing, note that our methodology need not
be exclusive of other techniques for integer ambiguity
resolution.  For instance, a small set of admissible
integer ambiguity hypotheses can obtained via Teunissen’s
LAMBDA method [1, 2]. These hypotheses could then be
analyzed using our techniques. In making this set small,
the LAMBDA method greatly reduces the computational
time required by our techniques.
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